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Abstract—Distributed network emulators allow users to per-
form network evaluation by running large-scale virtual networks
over a cluster of fewer machines. While they offer accessible
testing environments for researchers to evaluate their contri-
butions and for the community to reproduce its results, their
use of limited physical network and compute resources can
silently and negatively impact the emulation results. In this
paper, we present a methodology that uses linear optimization
to extract information about the physical infrastructure from
emulation-level packet delay measurements, in order to pinpoint
the root causes of emulation inaccuracy with minimal hypotheses.
We evaluate the precision of our methodology using numerical
simulations, then show how its implementation performs in a real
network scenario.

Index Terms—network emulation, passive delay measurement,
network tomography

I. INTRODUCTION

Distributed network emulation is a relatively recent ap-
proach for network experimentation that uses containers and
virtual switches to emulate the behaviour of real, physical
networks for research and/or education purposes. In particular,
it allows users to run a large-scale virtual network over a
cluster of fewer machines, each running a subset of the
virtual machines, and which are connected using overlay net-
working technologies. Mininet [8] and its forks (Mininet CE
[1], Maxinet [14], and Distrinet [3]) implement this network
emulation approach with a focus on accessibility and flexibility
by providing users with a simple-to-use Python API.

A direct challenge of network emulation is resource con-
tention: running multiple virtual components over fewer ma-
chines leads to concurrency in using the available physical re-
sources. This aspect of network emulation has been extensively
researched in previous studies, e.g., [9], [11]. In its extreme
cases, this may lead to emulated packets getting scheduled for
transmission later than normal when the packet rates exceed
the speed of the hardware CPUs, or to virtual links getting
throughputs lower than normal when the total packet rates
exceed the capacity of the underlying network. In general,
the underlying physical infrastructure adds delay to emulated
packets which might lower emulation quality, in a way that
tends to be silent and can bias the results unless a careful
analysis is carried out.

To measure this delay, the authors in [4] have implemented
a methodology that passively monitors the network delay
of emulated packets to gauge its increase by the physical
infrastructure, ultimately in order to detect eventual occur-
rences of contention failures. In this paper we use this

passive delay measurement tool to infer information about
the underlying infrastructure. Such information can be useful
for troubleshooting purposes, i.e., to identify which resource
–particularly network links– has not had enough available
capacities to correctly host the emulated network, and have
thus contributed to stretching the network delay of emulated
packets. In particular, we propose a network tomography [2],
[6] algorithm1 to infer the network delay of the infrastructure
components from the delay measurements passively collected
by Mininet or its distributed variants. Indeed, distributed
network emulators are mainly designed to run on shared
infrastructures (grids and clouds), which can be virtual, and
whose topology the user might know but cannot directly access
or measure. These main assumptions define the crux of the
problem. Using carefully tailored heuristics, our algorithm
performs relatively well even in settings where the user’s
emulation scenario does not provide enough measurements to
infer infrastructure delay.

Our troubleshooting methodology is heavily inspired from
previous works on delay tomography, whose objective is
inferring delays of internal links from end-to-end delay mea-
surements. This problem has been formulated in [7], [10] and
while it was historically solved using active measurement-
based methods, more recent attempts have instead focused on
internal delay inference from passive measurements. In [5] for
instance, the authors have focused on monitoring optimisation:
solving for the minimum set of vantage end-points in a
network from which a statistically accurate estimation of the
internal links’ delay distributions can be achieved. A later
study [12] assumed the impossibility of completely inferring
the internal (physical) delays of a network infrastructure from
the measurements collected at overlay virtual networks, and
proposed to train a neural network from simulated traffic
to fill in the missing information. This paper deals with
similar assumptions in a context of network emulation, where
emulated traffic can be very diverse and too short-lived to be
learned by a model. Instead we propose optimisation heuristics
to solve it.

The remainder of this paper is organised as follows: the next
section presents the problem in more details. We particularly
argue our choice of hypotheses and present our modeling
framework. Section III describes our delay tomography al-
gorithm along its implementation using existing tools, which

1The source code of the algorithm’s implementation, as well as instructions
to reproduce all the results in this paper are available at https://github.com/
distrinet-hifi/tshoot.
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Fig. 1: Emulated and infrastructure topologies.

we then evaluate in Section IV. Finally, Section V concludes
the paper with a summary and a discussion of possible future
work in this direction.

II. PROBLEM STATEMENT

The objective in this paper is troubleshooting emulation
failures by inferring physical infrastructure load from network
measurements collected at the virtual level. The main idea is
to determine if there is any unexpected load in the virtual
network, evidenced by higher packet delays, and identify
which elements of the underlying infrastructure are responsible
for it. As any underlying hardware (links and/or machines)
can add undesirable network delay to packets proportional to
its load, we can extract load information from the passively
measured delay of emulated packets. In this section, we de-
scribe the problem in more details by presenting our working
hypotheses, our mathematical modeling, and by discussing
raised challenges.

A. Hypotheses

Consider for example the simple scenario in Figure 1: a
virtual network (consisting of a virtual client and a virtual
server connected to a virtual switch) is emulated on top of a
physical network of three hosts H1, H2, and H3 connected
by a switch S. The virtual server sends a flow of packets
to the virtual client. Using traffic control tools, the virtual
links v1 and v2 are configured by the user to shape the traffic
according to the scenario they wish to emulate: limiting link
bandwidth, adding propagation delay, introducing packet loss,
etc. Given these traffic shaping parameters, each packet P
should experience a certain normal delay d(P ) depending on
its size, its position in the virtual links’ queues, etc. As this
packet moves over the virtual network, the links L1, L2, and
L3 of the physical network that are crossed by the packet will
also add a certain error delay ϵ(P ) depending on the packet
itself and on the current load of the infrastructure. When this
error delay exceeds some tolerance value, it will negatively
impact the results of the emulation. Unfortunately, the user
does not have full control over the physical infrastructure to
monitor the delay in all network nodes and links. However,
using the measurement tool designed by the authors in [4],
the user can monitor their own emulated network delays, and

can easily get information about error delays ϵ and use them
to infer infrastructure delays.

In our example, a packet P crossing the virtual link v1 will
experience a total measurable delay

d̂(P ) = d(P ) + d1(P ) + d2(P ),

where d(P ) is the normal emulation delay2, di(P ) is the error
delay introduced by physical link Li to the packet P . Likewise,
a packet Q crossing the virtual link v2 will experience a delay

d̂(Q) = d(Q) + d2(Q) + d3(Q).

The total error delays ϵ(P ), ϵ(Q) experienced by packets P
and Q respectively can be written as:

ϵ(P ) = d1(P ) + d2(P ) and ϵ(Q) = d2(Q) + d3(Q).

It follows that information about the delays experienced by
the packet on each underlying infrastructure link is embedded
in the measured delay of packets in the virtual network.
However, it is impossible to extract that information by
analysing each packet individually. Instead, we can resort to
a statistical approach that analyses infrastructure link delays
di on finite time intervals, and that examines a large number
of packets from different emulated links (i.e., that pass over
different infrastructure paths). Given some prior information
on the mapping of the virtual network onto the infrastructure,
statistics on the link delays of the infrastructure can thus be
inferred. In our scenario for example, if we define xi(T ) as
the average delay on link Li during a certain time interval
T ∈ T , and ϵj(T ) as the mean delay error of all sampled
packets during T , we have:{

x1(T ) + x2(T ) = ϵ1(T )
x2(T ) + x3(T ) = ϵ2(T )

In the general case, to each physical link Li corresponds a
sequence of variables (xi(T ))T∈T , and to each virtual link3

vj corresponds a sequence of mean delay errors (ϵj(T ))T∈T .
According to how virtual links map to the infrastructure
network, infrastructure and virtual links can then be related
by linear equations of the form:∑

i

ai,j(T ) · xi(T ) = ϵj(T ), (1)

where ai,j(T ) is a binary value equal to 1 if virtual link vj
crosses physical link Li and 0 otherwise.

The above set of linear equations can be further rewritten
into a more compact form:

A(T ) ·X(T ) = b(T ), (2)

where A(T ) is defined as the embedding matrix whose coef-
ficients are (ai,j(T )), X(T ) is a vector of variables (xi(T )),

2An emulated network can be congested due to a surge in emulated traffic.
The delay of its packets d(P ) remains normal as long as the physical
infrastructure does not interfere with the emulation.

3Without loss of generality, virtual links that cross the same path of infras-
tructure links can be aggregated into a single virtual link. The measurements
from these virtual links are combined into one homogeneous set.
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and b(T ) is a vector of collected delay errors (ϵj(T )). For
instance, the example networks above are described by the
embedding matrix;

A =

[
1 1 0
0 1 1

]
Our problem then translates into solving the set of equations

in (2) under the following three main hypotheses:
• the underlying topology and the embedding of the em-

ulated network are known, but the total load on the
different links of the infrastructure is unknown and cannot
be directly measured;

• through sampled passive delay measurement of emulated
packets, we are given broad information about the added
error delays, as well as the timestamps of packets to be
able to assign them to time intervals T ; and

• over time intervals of finite length, packets from different
virtual links crossing the same infrastructure link experi-
ence more or less the same delay distribution.

The first hypothesis essentially implies that the user knows
how the nodes of the infrastructure are connected, but does not
know their loads at all time instants, and cannot access them
for direct monitoring. This hypothesis is the default scheme in
shared infrastructures such as grids and clouds, where static
information (topology, component characteristics, etc.) can be
provided but the user cannot directly access networking nodes
and/or measure dynamic information (load, delay, packet loss)
as it is impacted by other users of the infrastructure.

The second hypothesis defines our source of data: the
user has complete control of her emulation scenario and can
implement a monitoring tool to passively measure the delays
of emulated packets. Such tools essentially intercept a subset
of the emulated packets (based on a preconfigured sampling
rate) and use information available to the emulator (queue
lengths, virtual link speed, etc.) to infer normal delays. The
last hypothesis is to ensure that different emulated packets
experience the same infrastructure network conditions when
they pass by the same infrastructure link even if they are from
different virtual links. In practice, this holds in all distributed
network emulators forked from Mininet, independently of the
emulated scenario, as they use typical tunneling protocols, e.g.,
Generic Routing Encapsulation (GRE) and Virtual Extensible
LAN (VXLAN) to create virtual Ethernet links on top of an
infrastructure network. Thus, neither differentiated treatment
of virtual links nor QoS mechanisms are used.

B. Challenges

1) Time synchronization: Being an explicit measure of
time, network delay measurement inevitably requires some
degree of time synchronization. Previous works like [4] have
discussed these limitations in passive delay measurement, and
have demonstrated that in a geographically localised network,
it is possible to achieve as few as 100 nanoseconds of clock
drift using only regular time synchronization protocols without
specialised hardware. In cases where this cannot be achieved,
these works propose to measure the joint round-trip delay

d(P,Q) of pairs of packets (P,Q) instead of their individual
one-way delays d(P ) and d(Q). Whether we consider indi-
vidual one-way delays or joint round-trip delays, our above
model does not change: if ϵj are measures of mean round-
trip delays on virtual links, then xi will also be measures of
round-trip underlay link delays.

2) Time decomposition: In the previous subsection we have
stated that infrastructure link delays xi can be approximated
by considering the mean absolute error of emulated packet
delays on a certain virtual link at a certain time interval. The
quality of such approximation heavily depends on the number
of collected packets and the length of the time interval. The
former can be improved by collecting packets using a higher
sampling rate, but the latter requires a compromise: longer
time intervals will contain more values but will challenge
the assumption that the physical link delay distribution is
stationary.

3) Problem dimension: The set of equations (2) have
unique solutions xi(T ) only if there are enough virtual links
that cross the diverse set of infrastructure links, i.e., when the
embedding matrices have more linearly independent rows than
columns. In such cases, a solution can directly be obtained by
discarding extra rows (those which are linear combinations of
other rows), and inverting the embedding matrix:

X(T ) = A−1(T ) · b(T ).

However, one must be cautious of potential noise added to
the measurements b(T ), which is due to the inevitable lack
of precision of any tool used to passively measure the delay.
This noise can be large enough to cause negative solutions
to the equations, which would correspond to negative values
of infrastructure delay. Nonetheless, an invertible matrix can
help control such errors: if instead of precise measurements
b(T ) the user provides approximations b̂(T ), then they can
only hope to get an approximate solution X̂(T ) but which
can be as close to the real solution as necessary, provided the
measurements are precise enough. Indeed, it follows from the
continuity of the matrix A−1(T ) that:

∀ ε > 0, ∃ δ > 0, ∥b̂− b∥ < δ ⇒ ∥X̂−X∥ < ε .

In the general case however, we cannot assume to have an
easily invertible embedding matrix. In the previous example
(Figure 1), the system of equations in (1) transforms into 2
equations (corresponding to 2 virtual links) and 3 variables
(corresponding to 3 physical links), or equivalently to a non-
invertible matrix, which cannot yield a unique solution. The
following section aims at working around all these constraints
by solving the problem suboptimally with the minimum pos-
sible error.

III. TROUBLESHOOTING ALGORITHM

A. Methodology

Considering all discussed challenges, a resolution methodol-
ogy necessarily requires controlling measurement imprecision
and circumventing underdimensioned matrices. To deal with
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the former, we add a vector ε(T ) of artificial variables εj(T )
that represent estimation and approximation errors for mea-
surements on virtual links vj . The system then has the form

A(T ) ·X(T ) = b(T ) + ε(T ) . (3)

While this mitigates measurement errors, it adds more un-
known variables to an already underdimensioned problem. In
practice, measurements tools designed for network emulation
are implemented with high precision as an important specifica-
tion, to thoroughly reduce these errors4. This observation can
help us control those measurement errors εj(T ) by assigning
them the smallest possible values in order to have a solvable
set of equations.

That being said, our resolution methodology will operate
in two steps. First, starting from an incomplete formulation
and noisy measurements, we look for the smallest error vector
ε(T ) to be accounted for to obtain a solvable system. The
output of this step is a set of values for the εj(T ) vector that
allow the system to be solved. In concrete terms, we first solve
the convex optimization problem:

minimizeX,ε ∥ε(T )∥2

subject to A(T ) ·X(T ) = b(T ) + ε(T ) (4)
X(T ) ≥ 0 .

Solving this convex optimization problem yields one solu-
tion with values for variables ε∗j (T ) as well as the variables
of interest xi(T ) (i.e., infrastructure link delays). However
in this first step we are only interested in the solvability of
the system and not in its entire resolution. In the case of
Figure 1 for example, we would be dealing with a linear
system of equations of dimension two and three unknowns,
after measurements are corrected with ε∗(T ) values.

The objective of the second step of our algorithm is to
reduce the set of possible solutions, and to select one of them
based on a certain heuristic. One way to achieve this is, again
taking inspiration from convex optimization, to choose the
solution that minimizes an objective function f :

minimizeX f(X(T ))

subject to A(T ) ·X(T ) = b(T ) + ε∗(T ) (5)
X(T ) ≥ 0 .

Next, we present two heuristics with incremental complexity
and comment on their signification.

1) Heuristic 1: This formulation is based on the observa-
tion that the probability that a large number of infrastructure
links exhibit high delay is relatively low. Indeed, in a complex
physical network, only a small subset of links –generally those
with the lowest capacities and/or that transport the most traffic
volumes– can be overloaded at the same time. This means
that among all solutions, we will select those that describe a
situation where the least number of overloaded infrastructure

4The precision of the measurement tool depends on its design and imple-
mentation. In this paper we use the tool from [4] which is guaranteed to
achieve a precision of a few hundred nanoseconds.

links are the cause of delay emulation errors in the virtual
network.

To achieve this, we first need to define a threshold delay
value θ, above which an infrastructure link should be con-
sidered overloaded. The choice of such a threshold clearly
depends on the situation at hand, but in general this should be
in the order of few milliseconds5. We then define our function
f as the number of xi values that exceed the threshold θ, i.e.,

f(x1, ..., xn) =
∑
i

1(xi > θ) .

This formulation does not involve a convex function, but it
can be rewritten into an equivalent form by adding new binary
variables zi, where zi = 1 if and only if xi > θ. We can write:

f(x1, ..., xn) =
∑
i

zi .

We then add new constraints that link variables zi and xi

together: θ−xi ≤M · (1− zi) and xi− θ ≤M · zi, where M
is a very large constant. The problem is then formulated as:

minimizeX,Z

∑
i

zi(T )

subject to A(T ) ·X(T ) = b(T ) + ε∗(T )

X(T ) ≥ 0

θ − xi(T ) ≤M(1− zi(T )), ∀i
xi(T )− θ ≤Mzi(T ), ∀i .

While this effectively implements the described strategy, its
main drawback is its computational difficulty. No algorithm to
solve such a linear program in polynomial time exists, and thus
the system can be computationally intractable for relatively
large networks. An easier and more straightforward variant
eliminates the zi variables and minimizes instead the total
physical delay:

f(x1, ..., xn) =
∑
i

xi.

This behaves similarly, but not always exactly, to the previous
objective function but is continuous and does not involve
integer variables:

minimizeX
∑
i

xi(T )

subject to A(T ) ·X(T ) = b(T ) + ε∗(T ) (6)
X(T ) ≥ 0 .

2) Heuristic 2: The above heuristic reduces the set of so-
lutions by choosing those that have a certain special property,
i.e., those that minimize the set of infrastructure links causing
the emulation delay anomaly. However, in some cases, this
may not be enough to select a good solution. One can find
cases (see our evaluation setup in Section IV) where two or

5We know from queuing theory that in practice, an overloaded link with a
finite size will result in high loss rate, which translates to infinite delay. Thus
the actual value of such threshold should not be of large concern.
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more infrastructure links always appear together in the embed-
ding of virtual links, which translates to a clique of variables xi

that either appear together or not at all in all equations. In such
cases more information is needed to discriminate between the
xi variables and select a good candidate for a solution. Such
information can be accounted for in the form of coefficients
αi ∈ R for each link Li, leading to an objective function of
the form:

f(x1, ..., xn) =
∑
i

αixi,

such that for any two links Li and Lj , we have αi > αj

if link Lj is more likely to cause delay emulation error than
link Li. If direct information about the infrastructure links
can be obtained (static characteristics such as type, length, or
bandwidth, or dynamic information about the traffic such as
load and queue backlog), the values of the αi coefficients can
be chosen to reflect this information. In the case this infor-
mation is not available (lack of control on the infrastructure
by the emulator), one can draw data from the history of the
links: if a physical link has consistently been the cause of
delay emulation error in previous time intervals S ∈ T (as
concluded by the heuristic itself), then its coefficient αi(T ) at
the current time interval T can be lowered to reflect this fact.
An example implementation of this observation is by assigning
the values αi(T ) as inverse (log-)probabilities of overload of
links Li, estimated from previous time intervals:

αi(T ) = − log

[∑
S∈T ,S<T 1{xi(S) > θ}
|{S ∈ T , S < T}|

]
.

The following algorithm summarises our methodology for
estimating the delay of infrastructure links with either of the
two heuristics presented above.

Algorithm 1 Physical delay inference methodology
αi ← 1
for t ∈ T do

Solve Convex Program (4) and get values for ε∗

Solve Linear Program (5)
Update coefficients αi

end for

B. Numerical simulations

The objective of this preliminary series of simulations is to
evaluate our delay inference methodology and to compare the
performances of the proposed heuristics.

We consider for our simulations an abstraction of the
physical network shown in Figure 2. This network is designed
as a 4-ary fat tree topology typically used in data centers.
The end servers are simulated to host a certain number of
virtual nodes and links. In particular, a number of virtual links
are hosted between randomly selected pairs of end servers.
Then, a Markovian network traffic of random rate is simulated
asynchronously on each of these virtual links. We timestamp
each packet at both ends of the virtual link on which it is
simulated, but also on both ends of each physical link it

Fig. 2: Graph representation of a 4-ary fat tree topology. The
central vertices represent the cores switches, which connect
4 pods of aggregate and edge switches; the end servers are
represented by the vertices of degree 1.

crosses. Finally, the first set of measurements (at the virtual
level) is fed to our algorithm to infer the underlying physical
delays at specific time intervals (of 10 ms), which are then
compared to ground truth on the delay obtained from the
second set of measurements (at the infrastructure level). The
experiment is designed to last an average of 100 s.

The results are shown in Figure 3. Each dot represents the
mean measured delay (x-axis) and estimated delay (y-axis) on
a certain physical link for a certain time interval. We can see
how well our algorithm performs overall, and how Heuristic 2
behaves relatively well (less underestimated values) compared
to Heuristic 1. Knowing that the embedding matrices A(T )
in more than 90% of all time intervals had ranks6 less than
half their number of columns, the results are an average error
over all links and all time intervals of 2.50 ms (resp. 1.63 ms)
between measured and estimated values for Heuristic 1 (resp.
Heuristic 2). With the precision of an estimation algorithm
defined as the fraction of links that are correctly identified
as overloaded (with a tolerance threshold value of 10 ms),
our methodology achieves an average precision of 81.5%
with Heuristic 1, and 86.2% with Heuristic 2 over all time
intervals. The measurements clustered in a vertical line at
(x = 8.10−4s, y > x) correspond to time intervals when
one of the core links had normal delay but was mistakenly
designated as faulty by our algorithm. Indeed, our heuristics
are designed to minimize the total delay in the infrastructure
network (or a weighted sum over all links for Heuristic 2),
and thus will tend to assume high delays in links that are part
of multiple paths (in this case, core links). Nonetheless, this
constitutes less than 10% of all measurements in this scenario.

C. Implementation

In real distributed emulators, our troubleshooting algorithm
can be implemented by building on top of the delay mea-

6The rank of a matrix or of a linear system is defined as the number of
linearly independent rows or equations.
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Fig. 3: Scatterplot of measured delays (x-axis) vs. estimated
delays (y-axis) using Heuristic 1 (left) and Heuristic 2 (right).
Each dot shows the measured and estimated delay of a certain
link (colour) during a certain time interval.

surement tool designed in [4]. This tool allows the user to
passively monitor the link-level delay of network packets in
virtual and/or physical networks, by plugging an Extended
Berkeley Packet Filter (eBPF) [13] program into both ends
of each link. This lightweight program is a set of instructions
added to the traffic control subsystem to log relevant informa-
tion (packet hash, timestamp, size of queue and head-of-line
packet at arrival) about all intercepted packets in persistent
files, which are later parsed and analysed offline for delay
measurement. However, this tool, when used in virtual links set
up by the emulator, measures the link-level delay of emulated
packets, which does not directly inform about the underlying
infrastructure delay. In the example in Figure 1, by plugging
the eBPF code on both ends of virtual link v1, we can measure
the delay ˆd(P ) of every packet P , which is the sum of its
emulated delay d(P ) and the physical (error) delay ϵ(P ).
Thus, we modify the program to also log the emulated delay
d(P ) in order to evaluate the physical delay.

In short, our algorithm can be implemented as:
• packet loggers: eBPF code pluggable into the traffic

control (Linux TC) subsystem of emulated links, which
intercepts emulated packets and logs in files raw informa-
tion about their transmission and reception (timestamps,
packet hashes, emulated delay, etc.). As explained in [4],
eBPF performs this task in a low-overhead manner, as
it does not add more than a microsecond of delay to
intercepted packets; and

• an offline analyser which gathers all logged information
to estimate measured infrastructure delays.

As it uses the same design logic as the delay measurement
tool presented in [4], the interception and logging of packets
does not decrease the performance of the virtual network. The
authors show that it only adds sub-microsecond delay to each
intercepted packet. However, the information logging can be
heavy in terms of storage. Nonetheless, as intercepting each

and every packet is not necessary, using a sampling strategy
(e.g. random packet sampling with a rate of 10%) reduces
this overhead without decreasing the overall performance of
our troubleshooting algorithm.

IV. EXPERIMENTAL EVALUATION

A. Testbed

We consider the network scenario described in Figure 4.
In this scenario, 40 clients (vc1, vc2, ..., vc40) are syn-
chronously downloading a 100 MB file from a random server
(vs1, vs2, ..., vs5) located on the same Ethernet segment. All
clients are connected to the central switch by links of 100
Mbps bandwidth and 1 ms delay; the servers are connected
by links with no traffic control, i.e., without limitation of
bandwidth and practically without delay. The experiment is
run using Distrinet [3], and is embedded on an private cloud
infrastructure composed of four hosting machines connected
with two switches as shown in Figure 4. Each machine runs
an Ubuntu 18.04 Linux distribution with a 4.15.0 kernel, using
a CPU Intel Core i7-2600 processor and 8 GB of RAM.
Furthermore, the embedding algorithm used is configured in
a way that all emulated file servers and the virtual switch are
hosted in the same machine (host H1); the emulated clients in
their turn are distributed fairly over the four other machines.

Throughout the duration of the experiment, we collect
passive measurements of emulated packet delays (with a
random sampling of 10%), from which we extract the error
delays added by the infrastructure network components. We
use our methodology described earlier to infer the load on the
infrastructure which we interpret and discuss in light of the
conclusions made from a more situational analysis.

B. Results

Figure 5 summarizes our results. The figure shows the
evolution during the experiment time of the host throughput
and the virtual link delay error. We first note how the clients
experience different throughput values depending on whether
they are hosted in H1 and H2 (mean throughput around
90 Mbps and 85 Mbps respectively), or H3 and H4 (mean
throughput around 42 Mbps) (Figure 5a), even though all
clients are designed in the emulated experiment with equal
bandwidths of 100 Mbps. This is also evident from the delay
emulation errors: virtual links for clients in hosts H3 and H4

experience higher delay emulation error (Figure 5b).
These absolute error values, which correspond to the delays

added by the underlying infrastructure, are then fed to our
estimation algorithm. Given the size of the downloaded file and
the achieved throughput, each experiment lasts approximately
20 seconds in total, which are divided into T intervals of
100 ms each. Figure 6 shows the inferred delays for each
link of the infrastructure. With a tolerance threshold of 1
ms, we can conclude that links H1-S1 and S1-S2 are the
main causes behind the emulation inaccuracy. However, this
conclusion depends on which heuristic is used: while the
results of Heuristic 2 show that link S1-S2 adds the largest
delay throughout the entirety of the experiment, Heuristic 1
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Fig. 4: Emulated network (red) and underlying cluster network.

(a) Application-level throughput achieved by each emulated client:
clients hosted in H1 in blue; clients hosted in H2 in red; clients
hosted in H3 in green; and clients hosted in H4 in magenta.

(b) Mean Absolute Errors of virtual links emulated in H1 (blue),
between H1 and H2 (red), between H1 and H3 (green), and between
H1 and H4 (magenta).

Fig. 5: High-level (a) and low-level (b) evidence of emulation
inaccuracy caused by infrastructure overload.

Fig. 6: Network delay of each link of the infrastructure
estimated using Heuristic 1 (left) and Heuristic 2 (right).

switches from S1-S2 to H1-S1 mid-run. We discuss this
difference in the next subsection, and explain why Heuristic 2
better reflects the reality in our particular scenario.

C. Discussion

For each time interval, our algorithm solves a linear pro-
gram modeling the virtual-to-infrastructure embedding and
taking into account the measured emulation delay errors.
The solution to this linear program consists of an estimation
of the infrastructure link delays during the considered time
interval. The form of this linear program depends on the set
of available measurements. In particular, during the first half
of the experiment, as all virtual links are active, the linear
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program is written as:

minimizeα1x1 + α2x2+α3x3 + α4x4+α5x5

subject to x1 + x2 = MAE1

x1 +x3 + x4 = MAE2

x1 +x3 +x5 = MAE3 .

Once clients in H1 and H2 finish downloading the file,
traffic stops on their links, and so variable x2 and Equation
(2) are no longer part of the program:

minimize α1x1 + α3x3+α4x4 + α5x5 (7)
subject to x1 + x3 +x4 = MAE2 (8)

x1 + x3 + x5 = MAE3 . (9)

In this new formulation, variables x1 and x3 essentially play
the same role if α1 = α3 as with the case of Heuristic 1
(where all coefficients αi are equal to 1). Thus, any solution
(x1, x2, x4, x5) is valid for Heuristic 1 as long as x1+x3 = c
for some constant c. However, using Heuristic 2, coefficients
αi are dynamically chosen based on the solutions in previous
time intervals. And as link S1-S2 is more often designated
faulty at the first half of the experiment, we have α3 < α1.
Under these circumstances, variable x3 is preferred, which
makes S1-S2 more likely to be designated faulty in the second
half of the experiment as well, consistent with the fact that the
link is purposely underdimensioned.

V. CONCLUSION

Network emulation requires delicate fidelity monitoring to
assess the accuracy of obtained results and avoid incorrect
conclusions. But once the failure is acknowledged, an impor-
tant next step is to troubleshoot the potential root causes and
identify which parts of the infrastructure could not handle the
emulation load. In this paper, we have presented a method-
ology inspired by past studies on network tomography, that
uses passive measurements collected in an overlay emulated
network to infer the delay of the underlay infrastructure
network. This methodology models the two networks and the
embedding of the former over the latter as a linear optimization
problem, whose solution tries to capture the information on
the delay values in each component of the underlay network.
While we have shown that this modeling can yield good results
with fair precision, some of its aspects can be further devel-
oped: the choice of the objective function (see Section III) and
how to dynamically update its coefficients, for instance, can be
improved to better quantify the likelihood of each component
being faulty. Additionally, our troubleshooting algorithm only
aims to perform root cause analysis of the underlying network,
but does not offer solutions to overcome possible failures. Such
a solution can be a better embedding of the emulated network,
or a better routing policy. These aspects are to be developed
in future work.
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