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Abstract
Distributed network emulators allow users to perform network evaluation by running large-scale virtual networks over a
cluster of fewer machines. While they offer accessible testing environments for researchers to evaluate their contributions
and for the community to reproduce its results, their use of limited physical network and compute resources can silently
and negatively impact the emulation results. In this paper, we present a methodology that uses linear optimization to extract
information about the physical infrastructure from emulation-level packet delay measurements, in order to pinpoint the root
causes of emulation inaccuracy with minimal hypotheses. We evaluate the precision of our methodology using numerical
simulations and then show how its implementation performs in a real network scenario.

Keywords Network emulation · Passive delay measurement · Network tomography

1 Introduction

Distributed network emulation is a relatively recent approach
for network experimentation that uses containers and virtual
switches to emulate the behaviour of real, physical net-
works for research and/or education purposes. In particular,
it allows users to run a large-scale virtual network over a
cluster of fewer machines, each running a subset of the vir-
tual machines, with these latter ones connected using overlay
networking technologies. Mininet [10] and its forks (Mininet
CE [1], Maxinet [16], and Distrinet [3]) implement this net-
work emulation approach with a focus on accessibility and
flexibility by providing users with a simple-to-use Python
API.

A direct challenge of network emulation is resource con-
tention: running multiple virtual components over fewer
machines leads to concurrency in using the available phys-
ical resources. This aspect of network emulation has been
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extensively researched in previous studies, e.g., [11, 13]. In
its extreme cases, this may lead to emulated packets getting
scheduled for transmission later than normal when the packet
rates exceed the speed of the hardware CPUs, or to virtual
links getting throughputs lower than normal when the total
packet rates exceed the capacity of the underlying network.
In general, the underlying physical infrastructure adds delay
to emulated packets which might lower emulation quality, in
a way that tends to be silent and can bias the results unless a
careful analysis is carried out.

Tomeasure this delay, the authors in [4] have implemented
a methodology that passively monitors the network delay of
emulated packets to gauge its increase by the physical infras-
tructure, ultimately in order to detect eventual occurrences
of contention failures. In this paper, we build upon this pas-
sive delay measurement tool to infer information about the
underlying infrastructure. Such information can be useful for
troubleshooting purposes, i.e., to identify which resource—
particularly network links—has not had enough available
capacities to correctly host the emulated network, and has
thus contributed to stretching the network delay of emulated
packets. In particular, we propose a network tomography
[2, 8] algorithm1 to infer the network delay of the infras-
tructure components from the delay measurements passively
collected byMininet [10] or its distributed variants [1, 3, 16].

1 The source code of the algorithm’s implementation and instructions
to reproduce all the results in this paper are available at https://github.
com/distrinet-hifi/tshoot.
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Indeed, distributed network emulators aremainly designed to
run on shared infrastructures (grids and clouds), which can be
virtual, and whose topology might be known by the user but
not directly accessible or measurable. These main assump-
tions define the crux of the problem. Using carefully tailored
heuristics, our algorithm performs relatively well even in set-
tings where the user’s emulation scenario does not provide
enough measurements to infer infrastructure delay.

Our troubleshootingmethodology is heavily inspired from
previous works on delay tomography, whose objective is
inferring delays of internal network links from end-to-end
delay measurements. This problem has been formulated in
[9, 12], and while it was historically solved using active
measurement-based methods, more recent attempts have
instead focused on internal delay inference frompassivemea-
surements. In [7] for instance, the authors have focused on
monitoring optimisation: solving for the minimum set of
vantage end-points in a network from which a statistically
accurate estimation of the internal links’ delay distributions
can be achieved. A later study [14] assumed the impossibil-
ity of completely inferring the internal (physical) delays of
a network infrastructure from the measurements collected at
overlay virtual networks and proposed to train a neural net-
work from simulated traffic to fill in the missing information.
This paper deals with similar assumptions in a context of net-
work emulation, where emulated traffic can be very diverse
and too short-lived to be learned by amodel. Instead, we pro-
pose optimisation heuristics to solve for the network delay
of the infrastructure components.

This journal paper is an extension of a previously pre-
sented work in the 26th Conference on Innovation in Clouds,
Internet, and Networks and published as a conference paper
in its proceedings [6]. The remainder of the paper is organ-
ised as follows: the next section presents the problem in
more details. We particularly argue our choice of hypotheses
and present ourmodeling framework. Section3 describes our
delay tomography algorithm along its implementation using
existing tools, which we then evaluate in Sect. 4. Finally,

Sect. 6 concludes the paper with a summary and a discus-
sion of possible future work in this direction.

2 Problem statement

The objective in this paper is troubleshooting emulation fail-
ures by inferring physical infrastructure load from network
measurements collected at the virtual level. The main idea is
to determine if there is any unexpected load in the virtual net-
work, evidenced by higher packet delays, and identify which
elements of the underlying infrastructure are responsible
for it. As any underlying hardware (links and/or machines)
can add undesirable network delay to packets proportional
to its load, we can extract load information from the pas-
sively measured delay of emulated packets. In this section,
we describe the problem in more details by presenting our
working hypotheses, ourmathematical modeling, and by dis-
cussing raised challenges.

2.1 Hypotheses

Consider for example the simple scenario in Fig. 1: a virtual
network (consisting of a virtual client and a virtual server
connected to a virtual switch) is emulated on top of a phys-
ical network of three hosts H1, H2, and H3 connected by a
switch S. The virtual server sends a flow of packets to the vir-
tual client. Using traffic control tools, the virtual links v1 and
v2 are configured by the user to shape the traffic according to
the scenario they wish to emulate: limiting link bandwidth,
adding propagation delay, introducing packet loss, etc. Given
these traffic shaping parameters, each packet P should expe-
rience a certain normal delay d(P) depending on its size,
its position in the virtual links’ queues, etc. As this packet
moves over the virtual network, the links L1, L2, and L3

of the physical network that are crossed by the packet will

Fig. 1 Emulated and
infrastructure topologies
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also add a certain error delay ε(P) depending on the packet
itself and on the current load of the infrastructure. When this
error delay exceeds some tolerance value, it will negatively
impact the results of the emulation. Unfortunately, the user
does not have full control over the physical infrastructure to
monitor the delay in all network nodes and links. However,
using the measurement tool designed by the authors in [4],
the user canmonitor their own emulated network delays, esti-
mate information about error delays ε, and use them to infer
infrastructure delays.

In our example, a packet P crossing the virtual link v1
will experience a total measurable delay

d̂(P) = d(P) + d1(P) + d2(P),

where d(P) is the normal emulation delay,2 and di (P) is
the error delay introduced by physical link Li to the packet
P . Likewise, a packet Q crossing the virtual link v2 will
experience a delay

d̂(Q) = d(Q) + d2(Q) + d3(Q).

The total error delays ε(P) and ε(Q) experienced by packets
P and Q respectively can be written as follows:

ε(P) = d1(P) + d2(P) and ε(Q) = d2(Q) + d3(Q).

It follows that information about the delays experienced by
the packet on each underlying infrastructure link is embedded
in themeasured delay of packets in the virtual network. How-
ever, it is impossible to extract that information by analysing
each packet individually. Instead, we can resort to a statis-
tical approach that analyses infrastructure link delays di on
finite time intervals and that examines a large number of
packets from different emulated links (i.e., that pass over
different infrastructure paths). Given some prior information
on themapping of the virtual network onto the infrastructure,
statistics on the link delays of the infrastructure can thus be
inferred. In our scenario for example, if we define xi (T ) as
the average delay on link Li during a certain time interval
T ∈ T , and ε j (T ) as the mean delay error of all sampled
packets during T , we have the following:

{
x1(T ) + x2(T ) = ε1(T )

x2(T ) + x3(T ) = ε2(T )

In the general case, to each physical link, Li corresponds
to a sequence of variables (xi (T ))T∈T , and to each virtual

2 An emulated network can be congested due to a surge in emulated
traffic. The delay of its packets d(P) remains normal as long as the
physical infrastructure does not interfere with the emulation.

link3, v j corresponds to a sequence of mean delay errors
(ε j (T ))T∈T . According to how virtual links map to the
infrastructure network, infrastructure and virtual links can
then be related by linear equations of the form:

∑
i

ai, j (T ) · xi (T ) = ε j (T ), (1)

where ai, j (T ) is a binary value equal to 1 if virtual link v j

crosses physical link Li and 0 otherwise.
The above set of linear equations can be further rewritten

into a more compact form:

A(T ) · X(T ) = b(T ), (2)

where A(T ) is defined as the embedding matrix whose coef-
ficients are (ai, j (T )),X(T ) is a vector of unknown variables
(xi (T )) modeling infrastructure link delays, and b(T ) is a
vector of collected delay errors (ε j (T )) on virtual links. For
instance, the example scenario above can be described by the
following embedding matrix:

A =
[
1 1 0
0 1 1

]

Our problem then translates into solving the set of equa-
tions in (2) under the following three main hypotheses:

• The underlying topology and the embedding of the emu-
latednetwork are known, but the total loadon thedifferent
links of the infrastructure is unknown and cannot be
directly measured.

• Through sampled passive delay measurement of emu-
lated packets, we are given broad information about the
added error delays, as well as the timestamps of packets
to be able to assign them to time intervals T .

• Over time intervals of finite length, packets from dif-
ferent virtual links crossing the same infrastructure link
experience more or less the same delay distribution.

The first hypothesis essentially implies that the user knows
how the nodes of the infrastructure are connected, but does
not know their loads at all time instants, and cannot access
them for direct monitoring. This hypothesis is the default
scheme in shared infrastructures such as grids and clouds,
where static information (topology, component character-
istics, etc.) can be provided but the user cannot directly

3 Without loss of generality, virtual links that cross the same path of
infrastructure links can be aggregated into a single virtual link. Themea-
surements from these virtual links are combined into one homogeneous
set.
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access networking nodes and/or measure dynamic informa-
tion (load, delay, packet loss) as it is impacted by other users
of the infrastructure.

The second hypothesis defines our source of data: the
user has complete control of her emulation scenario and can
implement a monitoring tool to passively measure the delays
of emulated packets and estimate if they deviate from their
expected values. Such tools essentially intercept a subset of
the emulated packets (based on a preconfigured sampling
rate) and use information available to the emulator (queue
lengths, virtual link speed, etc.) to infer normal delays.

The last hypothesis is to ensure that different emulated
packets experience the same infrastructure network condi-
tions when they pass by the same infrastructure link even if
they are from different virtual links. In practice, this holds
in all distributed network emulators forked from Mininet,
independently of the emulated scenario, as they use typi-
cal tunneling protocols, e.g., Generic Routing Encapsulation
(GRE) and Virtual Extensible LAN (VXLAN) to create
virtual Ethernet links on top of an infrastructure network.
Thus, neither differentiated treatment of virtual links norQoS
mechanisms are used.

2.2 Challenges

2.2.1 Time synchronisation

Being an explicit measure of time, network delay measure-
ment inevitably requires some degree of time synchronisa-
tion. Previous works like [4] have discussed these limitations
in passive delay measurement and have demonstrated that in
a geographically localised network, it is possible to achieve
as few as 100 ns of clock drift using only regular time syn-
chronisation protocolswithout specialised hardware. In cases
where this cannot be achieved, these works propose to mea-
sure the joint round-trip delay d(P, Q) of pairs of packets
(P, Q) instead of their individual one-way delays d(P) and
d(Q). Whether we consider individual one-way delays or
joint round-trip delays, our above model does not change: if
ε j are measures of mean round-trip delays on virtual links,
then xi will also be measures of round-trip underlay link
delays.

2.2.2 Time decomposition

In the previous subsection, we have stated that infrastructure
link delays xi can be approximated by considering the mean
absolute error of emulated packet delays on a certain virtual
link at a certain time interval. The quality of such approxima-
tion heavily depends on the number of collected packets and
the length of the time interval. The former can be improved
by collecting packets using a higher sampling rate, but the
latter requires a compromise: longer time intervals will con-

tain more values but will challenge the assumption that the
physical link delay distribution is stationary.

2.2.3 Problem dimension

The set of equations (2) have unique solutions xi (T ) only
if there are enough virtual links that cross the diverse set
of infrastructure links, i.e., when the embedding matrices
have more linearly independent rows than columns. In such
cases, a solution can directly be obtained by discarding extra
rows (those which are linear combinations of other rows) and
inverting the embedding matrix:

X(T ) = A−1(T ) · b(T ).

However, one must be cautious of potential noise added to
the measurements b(T ), which is due to the inevitable lack
of precision of any tool used to passively measure the delay.
This noise can be large enough to cause negative solutions
to the equations, which would correspond to negative values
of infrastructure delay. Nonetheless, an invertible matrix can
help control such errors: if instead of precise measurements
b(T ) the user provides approximations b̂(T ), then they can
only hope to get an approximate solution X̂(T ) which can
be as close to the real solution as necessary, provided the
measurements are precise enough. Indeed, it follows from
the continuity of the matrix A−1(T ) that

∀ ε > 0, ∃ δ > 0, ‖b̂ − b‖ < δ ⇒ ‖X̂ − X‖ < ε .

In the general case, however, we cannot assume to have
an easily invertible embedding matrix. In the previous exam-
ple (Fig. 1), the system of equations in (1) transforms into 2
equations (corresponding to 2 virtual links) and 3 variables
(corresponding to 3 physical links), or equivalently to a non-
invertible matrix, which cannot yield a unique solution. The
following section aims at working around these constraints
by solving the problem suboptimally with the minimum pos-
sible error.

3 Troubleshooting algorithm

3.1 Methodology

Considering all discussed challenges, a resolution methodol-
ogy necessarily requires controlling measurement impreci-
sion and circumventing underdimensioned matrices. To deal
with the former, we add a vector ε(T ) of artificial variables
ε j (T ) that represent estimation and approximation errors for
measurements on virtual links v j . The system then has the
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form

A(T ) · X(T ) = b(T ) + ε(T ) . (3)

While this mitigates measurement errors, it adds more
unknown variables to an already underdimensioned problem.
In practice, measurement tools designed for network emula-
tion are implemented with high precision as an important
specification, to thoroughly reduce these errors.4 This obser-
vation can help us control those measurement errors ε j (T )

by assigning them the smallest possible values in order to
have a solvable set of equations.

That being said, our resolution methodology will operate
in two steps. First, starting from an incomplete formulation
andnoisymeasurements,we look for the smallest error vector
ε(T ) to be accounted for to obtain a solvable system. The
output of this step is a set of values for the ε j (T ) vector that
allow the system to be solved. In concrete terms, we first
solve the convex optimization problem:

minimiseX,ε ‖ε(T )‖2
subject to A(T ) · X(T ) = b(T ) + ε(T ) (4)

X(T ) ≥ 0 .

Solving this convex optimization problem yields one solu-
tion with values for variables ε∗

j (T ) as well as the variables
of interest xi (T ) (i.e., infrastructure link delays). However,
in this first step, we are only interested in the solvability of
the system and not in its entire resolution. In the case of
Fig. 1, for example, we would be dealing with a linear sys-
tem of equations of dimension two and three unknowns, after
measurements are corrected with ε∗(T ) values.

The objective of the second step of our algorithm is to
reduce the set of possible solutions and to select one of them
based on a certain heuristic. One way to achieve this is again
taking inspiration from convex optimization, to choose the
solution that minimises an objective function f :

minimiseX f (X(T ))

subject to A(T ) · X(T ) = b(T ) + ε∗(T ) (5)

X(T ) ≥ 0 .

Next, we present three heuristics with incremental complex-
ity and comment on their signification.
Heuristic 0: lower and upper bounds of delay This first
heuristic aims at finding very loose lower and upper bounds
on underlay link delays. The goal of its formulation is gen-
erally not to solve the problem but only to offer insight

4 The precision of the measurement tool depends on its design and
implementation. In this paper, we use the tool from [4] which was
proven to achieve a precision of a few hundred nanoseconds.

and a baseline against which the next heuristic can be com-
pared. Concretely, the heuristic answers the question: what
are the minimum and maximum possible values of each indi-
vidual underlay link delay given the mapping matrix and the
overlay-level measurements? This can be achieved by solv-
ing the formulated abstract problem5 for the pair of functions

f 1i (x1, ..., xn) = xi and f 2i (x1, ..., xn) = −xi ,

for each underlay link i .
The lower and upper bounds are particularly interesting

in our context of finding overloaded links for troubleshoot-
ing purposes. Indeed, by defining a delay threshold θ above
which an underlay link is considered overloaded, the heuris-
tic can classify with absolute certainty the links into three
categories: normal-load, overload, and uncertain, following
Algorithm 1.

Algorithm 1 Troubleshooting algorithm: lower and upper
bounds
solve convex problem (4) and get values for ε∗
for i = 1, ..., n do

solve linear problem (5) with f (x1, ..., xn) = xi and get xmi
solve linear problem (5) with f (x1, ..., xn) = −xi and get xMi
if xmi > θ then

consider link i as overloaded
else ifxMi < θ

consider link i as normal-load
else

consider link i as uncertain
end if

end for

3.1.1 Heuristic 1

This formulation is based on the observation that the proba-
bility that a large number of infrastructure links exhibit high
delay is relatively low. Indeed, in a complex physical net-
work, only a small subset of links—generally those with
the lowest capacities and/or that transport the most traffic
volumes—can be overloaded at the same time. This means
that among all solutions, we will select those that describe
a situation where the least number of overloaded infrastruc-
ture links are the cause of delay emulation errors in the virtual
network.

To achieve this, we first need to define a threshold delay
value θ , above which an infrastructure link should be con-
sidered overloaded. The choice of such a threshold clearly
depends on the situation at hand, but in general, this should be
in the order of a few milliseconds.5 We then define our func-

5 We know from queuing theory that in practice, an overloaded link
with a finite buffer size will result in a high loss rate, which translates
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tion f as the number of xi values that exceed the threshold
θ , i.e.,

f (x1, ..., xn) =
∑
i

1(xi > θ).

This formulation does not involve a convex function, but it
can be rewritten into an equivalent formby adding newbinary
variables zi , where zi = 1 if and only if xi > θ . We can write
the following:

f (x1, ..., xn) =
∑
i

zi .

We then need to add new constraints that link variables zi and
xi together: θ − xi ≤ M · (1− zi ) and xi −θ ≤ M · zi , where
M is a very large constant. The problem is then formulated
as follows:

minimiseX,Z

∑
i

zi (T )

subject to A(T ) · X(T ) = b(T ) + ε∗(T )

X(T ) ≥ 0

θ − xi (T ) ≤ M(1 − zi (T )), ∀i
xi (T ) − θ ≤ Mzi (T ), ∀i .

While this effectively implements the described strat-
egy, its main drawback is its computational difficulty. No
algorithm to solve such a linear programme in polynomial
time exists, and thus, the system can be computationally
intractable for relatively large networks. An easier and more
straightforward variant eliminates the zi variables and min-
imises instead the total physical delay:

f (x1, ..., xn) =
∑
i

xi .

This behaves similarly, but not always exactly, to the previous
objective function but is continuous and does not involve
integer variables:

minimiseX
∑
i

xi (T )

subject to A(T ) · X(T ) = b(T ) + ε∗(T ) (6)

X(T ) ≥ 0 .

3.1.2 Heuristic 2

The above heuristic reduces the set of solutions by choos-
ing those that have a certain special property, i.e., those that
minimise the set of infrastructure links causing the emula-
tion to delay anomaly. However, in some cases, this may not

to infinite delay. Thus, the actual value of such threshold should not be
of large concern.

be enough to select a good solution. One can find cases (see
our evaluation setup in Sect. 4) where two or more infrastruc-
ture links always appear together in the embedding of virtual
links, which translates into a clique of variables xi that either
appear together or not at all in all equations. In such cases,
more information is needed to discriminate between the xi
variables and select a good candidate for a solution. Such
information can be accounted for in the form of coefficients
αi ∈ R for each link Li , leading to an objective function of
the form:

f (x1, ..., xn) =
∑
i

αi xi ,

such that for any two links Li and L j , we have αi > α j if
link L j is more likely to cause delay emulation error than
link Li . If direct information about the infrastructure links
can be obtained (static characteristics such as type, length, or
bandwidth or dynamic information about the traffic such as
load and queue backlog), the values of the αi coefficients can
be chosen to reflect this information. In the case this infor-
mation is not available (lack of control on the infrastructure
by the emulator), one can draw data from the history of the
links: if a physical link has consistently been the cause of
delay emulation error in previous time intervals S ∈ T (as
concluded by the heuristic itself), then its coefficient αi (T ) at
the current time interval T can be lowered to reflect this fact.
An example implementation of this observation is by assign-
ing the values αi (T ) as the inverse (log-)probabilities of the
overload of links Li , estimated from past time intervals:

αi (T ) = − log

[∑
S∈T ,S<T 1{xi (S) > θ}
|{S ∈ T , S < T }|

]
.

The following Algorithm 2 summarises our methodology
for estimating the delay of infrastructure links with either of
the two heuristics presented above.

Algorithm 2 Troubleshooting algorithm: Occam’s razor
αi ← 1
for T inT do

solve convex programme 4 and get values for ε∗
solve linear programme 5 with f (x1, ..., xn) = ∑

i αi xi
update coefficients αi

end for

3.2 Implementation

In real distributed emulators, our troubleshooting algorithm
can be implemented by building on top of the delay mea-
surement tool designed in [4]. This tool allows the user to
passively monitor the link-level delay of network packets in
virtual and/or physical networks, by plugging an extended
Berkeley Packet Filter (eBPF) [15] programme into both
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ends of each link. This lightweight programme is a set of
instructions added to the traffic control subsystem to log rel-
evant information (packet hash, timestamp, size of queue, and
head-of-line packet at arrival) about all intercepted packets in
persistent files,which are later parsed and analysed offline for
delay measurement. However, this tool, when used in virtual
links set up by the emulator, measures the link-level delay
of emulated packets, which does not directly inform about
the underlying infrastructure delay. In the example in Fig. 1,
by plugging the eBPF code on both ends of virtual link v1,
we can measure the delay ˆd(P) of every packet P , which is
the sum of its emulated delay d(P) and the physical (error)
delay ε(P). Thus, we modify the programme to also log the
emulated delay d(P) in order to evaluate the physical delay.

In short, our algorithm can be implemented as follows:

• Packet loggers: eBPF code pluggable into the traffic
control (Linux TC) subsystem of emulated links, which
intercepts emulated packets and logs in files raw informa-
tion about their transmission and reception (timestamps,
packet hashes, emulated delay, etc.). As explained in [4],
eBPF performs this task in a low-overhead manner, as it
does not add more than a microsecond of delay to inter-
cepted packets.

• Offline analyser: This gathers all logged information to
estimate measured infrastructure delays.

As it uses the same design logic as the delay measure-
ment tool presented in [4], the interception and logging of
packets do not decrease the performance of the virtual net-
work. The authors show that it only adds a sub-microsecond
delay to each intercepted packet. However, the information
logging can be heavy in terms of storage. Nonetheless, as
intercepting each and every packet is not necessary, using a
sampling strategy (e.g., random packet sampling with a rate
of 10%) reduces this overhead without decreasing the overall
performance of our troubleshooting algorithm.

4 Evaluation

4.1 Testbed

Underlay network (physical infrastructure) We run the sim-
ulations and the emulated experiment on a testbed which
consists of a subset of ten machines at the Rennes site
of the Grid50006 shared infrastructure. Figure2 provides
details on the infrastructure topology. Each of the end nodes
is used to host a part of our emulated network using a

6 Detailed information about its topology and the hardware specifica-
tions of its nodes can be found at https://www.grid5000.fr/w/Rennes:
Network.

Fig. 2 Underlay infrastructure network

distributed network emulator. Other end nodes are used
for generating external traffic to overload the links of the
infrastructure. Furthermore, we only use the eth0 inter-
face of the machines, and we consider links gw–c6509
and bigdata-sw–c6509 as one single link. The reason
behind this is that switch c6509 acts here as a repeater
between interfaces of equal bandwidth, and it is therefore
impossible to single out one of the two links for overload-
ing. The testbed thus involves 13 links (ten access and three
inter-switch links), which amounts to 8192 configurations of
overloading (any of the 13 links can be either overloaded or
not). We will run simulations to cover all these cases and run
the following emulated experiment on a selected sample.

Overlay network (emulated scenario) On the physical
testbed, we run an experiment that emulates a near-national
scale telco network where multiple ASes provide connectiv-
ity to clients and servers located in multiple regions (ten) of a
metropolitan Francemodel. Figure3 shows the telco network
we consider for our emulation. In this scenario, each site hosts
the same number of clients and servers, which are randomly
matched at the country level: a random server is assigned to
each client in the network (one-to-onematching), whichmay
not belong to the same AS. The clients then synchronously
download a file from the assigned servers, thus generating
network traffic on all overlay links and in all directions.
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Fig. 3 Overlay emulated
network

Overlay-to-underlay mapping The overlay network is emu-
lated on the underlay infrastructure optimally and equally:
all capacity constraints are satisfied, and each physical host
of the infrastructure runs the same number of virtual nodes.
This is achieved by assigning an entire site from the overlay
emulated network to its own unique physical host from the
underlay infrastructure (see Table 1).

Table 1 AS-Host mapping AS Host

Lille H1

Nancy H2

Rennes H3

Nantes H4

Paris H5

Lyon H6

Grenoble H7

Toulouse H8

Marseille H9

Nice H10

4.1.1 Numerical simulations

We first conduct a set of numerical simulations to evaluate
our troubleshooting algorithms on these specific overlay and
underlay network structures. The objective of this series of
simulations is to estimate the efficacy of our troubleshooting
algorithms on all possible overload cases (∼8000), which for
a lack of time and resources cannot all be runusing emulation.

The simulation flow is as follows:

• First, a binary vector u of size 13 is generated, where
each element ui indicates whether underlay link Li is
overloaded (ui = 1) or not (ui = 0).

• From the binary vector, we generate exponential-random
underlay link delays X, where xi > 1ms if and only if
link Li is overloaded.

• Using the mapping matrix from the testbed, we compute
the overlay link delays b.

• Then, we estimate the underlay link delays X̂ from the
overlay link delays b.

• Finally, the overloaded links û are determined from the
delay estimations and compared to the ground truth u.
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This is repeated for all possible vectors u ∈ {0, 1}13. The
estimations are evaluated using two metrics:

• Precision: a very conservative metric which is either 1 if
the estimation perfectly mirrors the truth (u = û) or 0
otherwise.

• F1-score: a looser metric that measures the similarity
between ground truth and estimation by taking values
in the interval [0, 1], which is defined as follows:

F1 = 2T P

2T P + FP + FN
,

where T P , FP , and FN are the numbers of true posi-
tives (overloaded links correctly labeled as such), of false
positives (non-overloaded links labeled as overloaded),
and of false negatives (overloaded links labeled as non-
overloaded), respectively. The score is equal to 1 if and
only if the estimation is perfect (u = û).

Figure4 shows the results. We see that our algorithm per-
forms relatively well with regard to the F1-score for all
cases, but its precision drops down the larger the number
of overloaded links is. This is not surprising given that the
main assumptionmotivating the heuristic is that eventswhere
many links are overloaded are unlikely to happen in practice.
On the other hand, the basic heuristic that relies on upper
and lower bounds often cannot fully troubleshoot congestion
failures.

4.1.2 Sample runs

Since we cannot conduct all 8192 possible combinations
of overloaded links, we present here only a selection—

Fig. 4 Simulation results on all 8192 overloading cases. The continuous
lines show the performance of linear algebraic troubleshooting with
Occam’s razor heuristic (Heuristic 1) and the dotted lines by relying
only on lower and upper bounds (Heuristic 0)

Fig. 5 Run 0. Perfect prediction: 100% precision and F1-score

representative—sample runs and comment on potential rea-
sons why the troubleshooting algorithm works or does not
make good predictions.

As the underlay network is a geographically localised
high-speed cluster of hardware, one should not expect net-
work delays exceeding a few tens or hundred microseconds.
As such, we will consider any estimated underlay delays
higher than 1 ms to be alarming and henceforth conclude
failure. The threshold delay θ is therefore fixed at 1 ms.
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The runs were conducted using HifiNet7 on a cluster of
machines running an 18.04 Ubuntu distribution with 4.15.0
Linux kernel.8

Run 0: clean infrastructure In this first run, apart from a few
control and management packets, no heavy traffic external
to the emulation is running on the underlay infrastructure
network. The user has exclusive access and exploitation of
the cluster. Therefore, this run serves as a control experiment
and will be considered baseline truth for following runs.

Using the emulation measurements, the fidelity monitor-
ing tool does not observe irregular delays, and the emulation
is recognised as non-faulty. The (very low) delays in the
underlay links can then be approximated, and the algorithm
can correctly identify (Fig. 5) that the infrastructure is not sat-
urated and therefore that no link is overloaded. The results,
showing an average flow completion time of 7.80 s over all
clients of the emulation, are thus to be trusted.

Run 1: inter-cluster bottleneck In this second run, an arti-
ficial external traffic is generated by unused machines to
overload host 5’s access link as well as the inter-switch link
(gw–(c6509–)bigdata-sw). This is experienced at the
emulation level as an unwanted delay in all core links con-
nected to the Paris site (hosted in H5), as well as an additional
delay between Paris and Lyon. This delay is high enough to
signal a break in emulation fidelity, and the troubleshooting
algorithm correctly attributes its source to the overloaded
links (Fig. 6). From the perspective of the users, this has
translated into inaccurate results and poorer experience: an
average flow completion time of 10.20 s, mostly between
clients and servers hosted in different sides of the country
(north-to-south and south-to-north traffic).

Run 2: uncorrelated bottlenecks In this run, we artificially
overload certain random links in the infrastructure net-
work with multiple uncorrelated traffic flows using external
machines (see Fig. 7). As the number of overloaded links
is relatively low, the proposed heuristics can still correctly
troubleshoot the failures with perfect precision.

Run 3: heavy rain in the south In this run, we generate
external traffic from and to hosts 6 through 10 and over the
inter-switch link. This creates congestion on the involved
underlay links which in its turn incurs high delays on the
emulated packets. The fidelity monitoring tool captures this

7 HifiNet is a distributed network emulator powered with a fidelity
monitoring plug-in that passively collects delay measurement on the
emulated packets to detect emulation failures [5]. Its code can be found
at https://github.com/distrinet-hifi/hifinet
8 Full description of the hardware can be found at https://www.
grid5000.fr/w/Rennes:Hardware.

Fig. 6 Run 1. Perfect prediction: 100% precision and F1-score

delay increase and raises the alarm for emulation failure.
Subsequently, the troubleshooting algorithm analyses the
overlay packet delays to estimate the underlay delays, using
the presented linear algebraic methods and relying on the
assumption that a minimal number of links is responsible
for emulation failure. In particular, our algorithm decides
(wrongly) that congestion of links H7–gw, H9–gw, and
gw–(c6509–)bigdata-sw is behind the measured high
delays in the overlay, simply because these constitute a suffi-
cient explanation. However, other links are also overloaded,
and their congestion contributes to the measured delay errors
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Fig. 7 Run 2. Perfect prediction: 100% precision and F1-score

in the overlay. We are here in a scenario of multiple over-
loaded underlay links, where our algorithm has difficulty
to perform as long as it finds a simpler explanation for the
anomaly with fewer loaded links (Fig. 8).

5 Emulation remapping

The final step in emulation fidelity monitoring is using
the troubleshooting predictions to help the user remake the

Fig. 8 Run 3. Erroneous prediction: 0% precision and 66.6% F1-score

experiment with a better mapping and potentially less errors.
This can be done through a compromise by reevaluating the
capacities of the infrastructure’s components: by feeding the
mapping algorithm artificially inflated information about the
amount of compute resources and deflated information about
the bandwidths of the underlay links. Indeed, the currently
implementedmapping algorithmswithin distributed network
emulators can be understood as black boxes that take static
information about the underlay (underlay topology and link
and node capacities) and overlay networks (overlay topol-
ogy and link bandwidth and node compute requirements) as
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input and produces a mapping of the latter over the former.
The idea behind our remapping strategy is then to force the
mapping algorithm to circumvent overloaded infrastructure
links and instead localise as many links as possible inside the
physical hosts. For this, we propose an algorithm based on
the following principles:

• If an underlay infrastructure link l ∈ L is overloaded,
it signifies that the total load λ(l) of all the emulated
links overlaid on top of it exceeds its available bandwidth
which is unknown. The user has thus overestimated its
capacity γ (l), and it should be decreased accordingly.

• By increasing the compute capacitiesγ (n)of the physical
host n ∈ N , the mapping algorithm will be incited to
redistribute the emulated nodes so as to decrease the total
load on the infrastructure network.

• Priority should be given to links for which higher delays
d(l) have been estimated, which generally correlate with
more stress.

Algorithm 3 Distributed emulation remapping
sort L by decreasing average delay
for l ∈ L do

if d(l) > θ then
γ (l) ← λ(l)

2
while m ← embed(γ ) is not None and N is not empty do

n ← pop(N )

γ (n) ← 2 · γ (n)

end while
end if

end forreturn m

Following the described principles, the algorithm operates
as follows:

• First, the set of underlay links are sorted by decreasing
delay estimated by the troubleshooting algorithm. This
will help give priority to links for which higher average
loads have been observed.

• Then, for each underlay link whose average delay
exceeds the overload threshold, its capacity (estimated
available bandwidth) is set to be half the aggregate band-
width of all links thatwere emulated over it (its loadλ(l)).
Indeed, if overload was observed, it necessarily means
that the link could not handle the maximum emulated
traffic throughput and therefore that its available band-
width was less than the aggregate emulated bandwidths.

• Anytime an underlay link’s bandwidth is decreased, the
algorithm tries to find a newmapping by artificially inflat-
ing the compute resources of nodes n. The algorithm
allows the inflation of each physical host by a factor of 2
at most.

• Finally, if a better remapping m with updated capacity
information γ is found, then it is returned; otherwise, the
user is notified with a None value.

6 Conclusion

Network emulation requires delicate fidelity monitoring to
assess the accuracy of obtained results and avoid incorrect
conclusions. But once the failure is acknowledged, an impor-
tant next step is to troubleshoot the potential root causes
and identify which parts of the infrastructure could not han-
dle the emulation load. In this paper, we have presented a
methodology inspired by established literature on network
tomography, that uses passive measurements collected in an
overlay emulated network to infer the delay of the underlay
infrastructure network. This methodology models the two
networks and the embedding of the former over the latter as
a linear optimization problem,whose solution tries to capture
the information on the delay values in each component of the
underlay network. While we have shown that this modeling
can yield good results with fair precision, some of its aspects
can be further developed: the choice of the objective function
(see Sect. 3) and how to dynamically update its coefficients,
for instance, can be improved to better quantify the likelihood
of each component being faulty. Another opportunity for
improvement is in the mapping and remapping algorithms:
these can be redesigned to allow for a better tomography. For
instance, constraints can be added to the mapping algorithm
to force it to produce an embedding where multiple paths of
the underlay network are crossed by emulated links, in order
to allow for a high-precision delay tomography.
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