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Abstract—Network experiments are an essential tool to de-
rive knowledge about network behavior. Yet, the experiment
landscape is fractured, consisting of many specialized experi-
ment enclaves, i.e., testbeds, with their own toolchain, limiting
portability between different testbeds. Such fracturing hinders
research, increasing the costs of replicating research across
enclaves. This increase in cost also holds for the possible reuse of
experiment parts across testbeds. Previous work introduced the
pos framework and methodology, reducing the required effort for
reproducible experiments. However, currently, this framework
is available solely in a limited set of testbeds. In this work,
we extend the proposed framework and, thus, build bridges
between existing testbed islands. To showcase our approach and
its feasibility, we recreate a well-known experiment on multiple
testbeds and compare the results. These results indicate repeata-
bility across testbeds. Concurrently, they highlight the flexibility
gained through our approach and the need for reproducibility-
aware experiment design.

Index Terms—Repeatability, Reproducibility, Replicability,
Network Experiment, Portability, plain orchestrating service
(pos)

I. INTRODUCTION

Though the indicating terminology might change over time,
the underlying truth does not: the interconnection of appli-
cations is ever-increasing, as are the requirements associated
with these applications. This truth holds regardless of the
application’s domain. Whether e-health, autonomous vehicles,
or industry, to name a few, all these applications expect specific
properties from the network. Often considered properties are
throughput or latency. Once it is determined which appli-
cations should run, it becomes the network operator’s task
to provide a network infrastructure to satisfy the implicit
demands on the network. A task that requires a thorough
understanding of network device behavior and interplay.

Precise and accurate investigation of network device be-
havior is challenging. On one side, the continued increase in
network line rate implies a reduced time budget for processing
operations, such as reacting to network changes [1]. Moreover,
increased network line rates result in the need for increasing
measurement precision. On the other side, networked systems
become more complex. While tempting, this complexity can-
not be ignored in investigations, as component interactions
may cause unwanted side effects. In other words, unwary
simplification may result in inaccurate results. To tackle
these challenges, researchers use designated test environments,
called testbeds, to obtain new insights. Insights, in this context,
are generally obtained and described via experiments. The

various demands to investigate specific systems have led to an
abundance of testbeds with varying scopes [2]. Independent
of the chosen testbed, the value of the insights obtained
depends on the ability of others to understand. When con-
sidering possible approaches to understanding previous work
by others, recreating the described experiments is common.
To describe the degree of experiment recreatability, ACM
defined three levels: repeatability, reproducibility, and repli-
cability [3]. Badges are awarded to papers depending on
whether a paper is, e.g., reproducible [4]. A task that is easier
described than performed [5]; even with careful investigation,
small changes in the environment may result in deviations
in the outcome. Despite these obstacles, reproducibility—and,
ultimately, replicability—of results is needed to support the
claims made.

The plain orchestrating service (pos) methodology [6] was
devised to reduce the burden imposed on researchers by the
requirement to design reproducible experiments. Through pos’
“reproducibility by design”, users are encouraged and aided
to build only reproducible experiments. In order to achieve
this, pos promotes a certain workflow. A prominent property
of this workflow is that all experiment nodes are live-booted
from a known set of images. I.e., it is discouraged to retain
or assume any state on the experiment nodes before or after
an experiment. This property allows anyone with access to
the same testbed nodes, images, and experiment scripts to
reproduce experiments.

Achieving reproducibility is, however, not an experimenter’s
highest honor. The latter is achieved through replicability.
However, to make a pos-based experiment replicable, the ex-
periment results must be reproducible first. I.e., with the same
setup, the same experiment outcome must be achievable by a
different team. Additionally, replicable experiments must be
consistent across different experimental setups. While the pos
methodology cannot provide an additional team to perform an
experiment, pos’ design allows it to be used in a multitude of
environments. Thus, to enable researchers to determine if their
experiment could achieve replicability, they would need to run
their experiments in at least two pos-enabled environments.
However, setting up different experiment infrastructures to
speculatively improve their experiments again increases the
burden on researchers. To mitigate this increased burden,
preconfigured pos-supporting testbeds are needed in which
researchers may run their experiments.

To address this need, we ported the pos framework to
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two public testbeds: Chameleon [7] and Cloudlab [8]. By
publishing our results, we aim to enable others to re-run
their experiments in different testbeds, hence improving their
research’s quality. Ultimately, research using this approach
empowers other groups to show the replicability of the
knowledge obtained. This empowerment is aided by the fact
that our approach allows anyone to execute an experiment
without modification of the experiment code to function on
multiple testbeds. In contrast, previous works required either
modification of experiment code to interact with different
testbeds or, in the case of geni-lib [9], only consider parts of
the functionality offered by pos excluding, e.g., controlling the
experiment itself. We show the feasibility of our approach by
performing a sample experiment in both public testbeds. For
comparison, we also conducted this experiment within two pos
testbeds: one physical and one virtualized.

The remainder of this work is structured as follows. Sec-
tion II introduces existing concepts to operate testbeds. Our
approach’s architecture is described in Section III. After that,
Section IV details the resulting implementation. We employ
this implementation for the experiments discussed in Sec-
tion V. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we investigate different approaches to oper-
ating testbeds and executing experiments.

Testbed orchestration vs. experiment control: We identi-
fied two components implemented in frameworks to operate
testbeds or run experiments, as shown in Figure 1. The first
component we call the testbed orchestrator. This component
is responsible for the management and preparation of the
experimental environment. Based on the available resources
and their reservation, the orchestrator initializes the specified
resources and prepares them to become ready for experimenta-
tion. The second component we call the experiment controller.
The main task of this component is the execution of the
experiment workflow in a prepared environment. Typically,
the experiment controller expects a particular structure, or
even a domain-specific language, to define experiments. Based
on this definition, experiments can involve the creation of
measurement results, evaluations, or plots.

To make experiments reproducible, the orchestrator needs to
create the state of the experiment environment reproducibly.
Portability is ensured if an orchestrator creates the environment
for the experiment controller across different platforms and the

experiment controller performs the experiment according to a
defined workflow. The following overview uses the previously
introduced concepts to categorize existing approaches for
testbed orchestration and experiment control.

A. Testbed Overview

Testbeds come in a wide variety, reflecting the different
requirements of research domains. At the same time, testbed
operators are conscious of the existence of other testbeds and,
hence, strive to join forces for a common goal. These joint
works resulted in successful cooperation, such as GENI [10],
whose successor FABRIC [11] recently took over and has
enabled access to experiment resources across a number of
testbeds, including Chameleon and Cloudlab. Also, on the
European side, there is ongoing work towards providing not
only individual testbeds but also opening access to different
testbeds to researchers. One manifestation of this work was
FED4FIRE [12]. While this project is now concluded, the
idea of a European testbed lives on in its successor, SLICES-
RI [13].

a) Existing approaches for testbed orchestration: The
geni-lib [9] is a library developed by the GENI initiative that
was created to provide an interface to orchestrate different
testbeds, such as CloudLab [8]. Testbed users use the API
of this library to orchestrate the testbed. The Chameleon
testbed [7] uses OpenStack [14] to manage the testbed re-
sources. Users can use the OpenStack APIs to orchestrate
this testbed. pos [6] is a testbed framework designed for the
creation of reproducible experiments. Using live Linux images
ensures that machine state is erased on reboot. In addition,
pos users need to fully automate the orchestration process for
a reproducible setup. Orchestration is handled via a command
line interface (CLI), i.e., any application that can utilize the
CLI will be able to use the pos orchestrator.

b) Existing approaches for experiment control: Along
with the continuous need for experiments comes the com-
munity’s striving for tools to simplify their handling. One
representative of this is the Common Workflow Language
(CWL) [15]. This programming language provides scaleable
tooling for automated execution of experiments, implementing
two standards: 1) details on available tools with their in- and
outputs and 2) description of composition rules for known
tools. CWL has several implementations using various plat-
forms such as SSH-accessible systems, Kubernetes, AWS, or
Azure to run experiments. It is a popular choice for processing
data-driven experiments in life sciences [16]. CWL is well-
suited to run purely software-based experiments that do not
require specialized hardware or network topologies. While
also focusing on the execution of experiments, the cOntrol
and Management Framework (OMF) [17] approached this
topic differently. Rakotoarivelo et al. developed a central
controller accepting jobs from experiments to execute on
the testbed’s hardware. Using a Ruby-based domain-specific
language (DSL) to describe experiments, OMF produces
experiment outputs available via SQL or HTTP interfaces.
NEPI [18] is a platform that provides different backends to
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execute experiments: a physical testbed, a network emulator,
and a network simulator. The NEPI framework provides an
abstraction layer on top of its supported backends utilized by
the experiments. Experiments use a Python API to control
the experimental workflow. In recent years, Chameleon inte-
grated services for experiment control [7]. The preferred in-
terface for experiment specification are Jupyter notebooks and
Chameleon’s Jupyter hub; to store these experiment artifacts,
researchers are encouraged to use Trovi. Jupyter notebooks
aggregate all steps of the experiment workflow. Researchers
are free to structure the experiment workflow according to their
personal preferences. The pos framework [6] also integrates a
component for experiment control. It relies not on a specific
API or library for defining experiments. The user writes scripts
that are executed on the allocated experiment nodes, and the
scripts can be started via the pos CLI from the management
node.

c) Benefits of the pos approach: In contrast to the
previously mentioned frameworks, pos does not require users
to learn and apply APIs or DSLs for orchestrating testbeds or
describing experiments. Interaction with pos is kept minimal
and handled via a CLI that can be utilized by experimenter-
defined scripts. This ensures a high degree of freedom for its
users while pos’ properties ensure a reproducible execution of
experiments.

B. Investigated Testbeds

For this paper, we want to focus on a specific type of testbed,
targeting a similar domain and offering off-the-shelf server
hardware: Chameleon, CloudLab, and pos. All three offer low-
level access to resources, therefore, a high degree of freedom
for the experimenter.

1) Chameleon: Operating since 2015, the Chameleon
testbed [7] provides an experiment platform for researchers.
Designed for a broad set of experiment domains, this testbed
provides networked compute on a heterogeneous device set.
The available hardware is listed on the testbed’s webpage.
The desired resources, e.g., networks and machines, can be
reserved for a given interval, assuming sufficient availability.
Another limiting factor when reserving is that resource allo-
cation requires a virtual currency; each project accepted on
the testbed has a limited amount of said currency to spend.
During the reserved interval, researchers can configure their
resources, e.g., the disk image to be used or how nodes are
connected, and conduct their experiments.

A recent addition to Chameleon is Trovi, a service hosting
Jupyter-notebook-based experiments and artifacts. The mo-
tivation for Trovi and Jupyter notebooks is the attempt to
provide a repository for collecting, publishing, and sharing
different experiments. Other researchers can easily access
Trovi to reproduce existing experiments or to derive their own
experiments.

2) Cloudlab: Cloudlab [8] is built on Emulab [19], a
purpose-built testbed management software. Designed as a
federated testbed, Cloudlab spans across multiple sites in
the USA. While sites vary in the kind of offered hardware,

there is a tendency towards commercial off-the-shelf servers.
Each type of hardware is generally available several times,
thus enabling experiments among the same kind of hardware.
Similar to Chameleon, connections between machines are
implemented via testbed-configurable data center switches. As
with servers, the kind of switch differs between sites.

Experiment setups in Cloudlab can be configured either via
an XML description or via a Python script, which, based on
provided libraries, allows to generate this XML description.
Part of this setup description are, e.g., the number of machines
required, their type, and disk image, or the intra-experiment
links. Additionally, optional information, such as experiment
documentation or commands to execute on boot, can be
configured this way. The resulting experiment description can
be shared with other researchers and simplifies recreating the
same experiment setup as needed.

To conduct an experiment, researchers can either search for
a suitable time slot by entering their requirements or try to
immediately begin experimenting. In the latter case, though,
more evolved reservations are more likely to be infeasible, as
many resource types are well-utilized. Part of the experiment
configuration associated with a reservation is, e.g., the disk
image to use on the reserved nodes. Once allocated for the
researcher, machines will be configured as instructed; this
configuration commonly includes tasks such as deploying SSH
keys or mounting a persistent NFS share. Before the allocation
terminates, the researcher may, provided sufficient availability,
request an extension of their experiment. After the experiment,
nodes are reimaged with a default configuration and made
inaccessible.

3) pos: Dedicated Deployment: The pos framework con-
sists of two components: a testbed orchestrator and an ex-
periment controller [6]. During the past years, pos-managed
testbeds were used for research and teaching at the Technical
University of Munich. Only a virtualized testbed has been
publicly available with a limited amount of resources.

To organize access to testbed resources between multiple
researchers, the pos deployment supports a calendar-based
resource reservation and allocation. Researchers can note their
intention to use resources during any interval. In their reserved
interval, experiments can be conducted by applying the pos
methodology. That is, researchers may allocate their reserved
nodes, configure arbitrary images to be live-booted, and make
use of other features of the pos framework to implement their
experiment.

4) pos: Virtualized Deployment: The virtualized deploy-
ment of pos considered in this work is similar to the ded-
icated deployment (cf. Section II-B3). The only difference
between virtualized and dedicated deployment is the type of
the experiment nodes: the dedicated deployment uses bare-
metal servers; in contrast, in the virtualized deployment virtual
machines (VMs) are used. Each physical machine present in
the dedicated deployment is represented by a VM running;
all VMs run on a single physical host. One benefit of this
approach is the reduced number of physical machines required
to host the testbed and perform experiments [20].
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III. ARCHITECTURE

The high-level architecture of pos follows a two-layer
design, consisting of the testbed orchestrator as the lower layer
and the experiment controller running on top (cf. Figure 1).
The testbed orchestrator contains all testbed-specific func-
tionality, the experiment controller only utilizes the interface
provided by the testbed orchestrator. To achieve portability,
only the testbed orchestrator needs to be modified when
porting the pos framework to other testbeds; the experiment
controller remains unchanged. With the experiment controller
left untouched, experiments using the pos experiment con-
troller do not need to be modified. Preserving the experiment
scripts reduces the workload for experimenters, as they do
not need to adapt their experiment code to new testbeds. At
the same time, the reproducibility-by-design is conserved, as
testbed orchestration and experiment controller ensure that all
properties of the pos methodology are maintained.

Also, apart from portability, another benefit of our approach
comes to mind: experiment metadata. To automatically enrich
experiment results with information about the experiment
environment, e.g., network topology and hardware involved,
pos captures and stores said information for each experiment
conducted. While performed automatically for scenarios where
pos acts as testbed orchestrator and experiment controller, this
capability is extensible to other testbeds providing the required
information in a machine-readable fashion.

Looking at commonalities between scientific testbeds, we
find that such settings feature in particular: 1) a set of entities
available for experiments, 2) a management facility to control
entities available for experiments, and 3) optional additional
services providing supplementing functionality to users, e.g.,
data storage for experiment results. Based on the premise of
limited assumptions, only the former two can be considered
when designing the pos experiment controller. However, the
use of pos should not prevent the use of features present in
the hosting testbed.

A high-level overview of the architecture of the pos frame-
work is depicted in Figure 2. There, a differentiation between
the hosting and the hosted testbed is made. The former
refers to the testbed providing the physical infrastructure

and means to orchestrate it. Moreover, the hosting testbed
may, as mentioned, feature additional services surpassing the
baseline requirements imposed by our approach. The hosted
testbed in Figure 2 refers to the testbed that features are used
to perform the actual experiment, i.e., the pos experiment
controller. Embedded in the hosting testbed the pos framework
provides a subset of the hosting testbed’s available function-
ality, ultimately providing an abstraction of it. Inside this
hosted testbed’s abstraction, there is, again, a differentiation
of resources. On the one hand, the pos experiment controller,
itself a managing entity. And, on the other hand, one or
multiple experiment nodes, provided by the hosting testbed,
are managed through the pos experiment controller. Note that
both the managing and the managed experiment nodes may
appear indistinguishable in their type to the hosting testbed’s
management node. Additionally, depending on the hosting
testbed’s design, nodes used by the hosted testbed may stem
from one or multiple experiments of the hosting testbed. For
example, the pos experiment controller and experiment nodes
managed by it may be part of different experiments on the
hosting testbed, cf. Figure 2.

Running the pos framework in a testbed relies on the
availability of certain functionality to be exposed via an API,
namely: 1) the ability to configure the power state of an
experiment node, i.e., turning it off and on again, and 2) the
means to control the boot process of experiment nodes, e.g.,
by allowing network boot or customizing the disk image to
boot. With these requirements met, the pos framework can be
ported to a testbed.

To summarize, to host the pos experiment controller inside
a variety of testbeds, a minimal set of functions, akin to all
observed testbeds and required to allow hosting our approach,
was determined. Building on this, the pos framework was
extended to enable interfacing with a dedicated as well as
representative existing testbeds. Details on the implementa-
tions will be provided subsequently. The architecture of the
pos experiment controller is summarized in Figure 2 and
prominently isolates the hosted from the hosting testbed.

IV. IMPLEMENTATION

As indicated previously, we implemented our approach for a
selection of testbeds. This selection is based on the experiences
reported by Nussbaum [2]; he surveyed available testbeds
with a focus on Chameleon, Cloudlab, and Grid’5000 [21].
Given that the latter two support GENI [10], we base our
implementation on this API, thus achieving compatibility
with both testbeds. Support for Chameleon is achieved by
adding support for OpenStack’s API to pos. Consequently, the
presented approach is not limited to the chosen testbeds.

While the pos methodology is impartial to the language
and tools used to conduct experiments, researchers are not.
Interactive and visual tools such as Jupyter [22] enjoy great
popularity. In a previous work, Demchenko et al. [23] investi-
gate reproducible research and tools suitable for this task. They
show how the pos methodology and Jupyter notebooks can be
combined to this effect. Building on this, this section shows
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how Jupyter notebooks can be integrated with the proposed
pos experiment controller.

The remainder of this section provides information about
implementation considerations for the respective testbeds. As
each implementation follows the overarching architecture, this
description is focused on particularities related to the indi-
vidual testbeds. An overview of the different implementation
approaches is given in Figure 3.

A. pos: Dedicated Deployment

In the dedicated deployment, cf. Figure 3a, the hosting
testbed is non-existent and the pos experiment controller
is solely responsible for managing the infrastructure. This
implies increased control of the experiment infrastructure.
At the same time, it also imposes a larger burden on the
experimenter. As an example, the hosting testbeds may provide
additional recovery features of integration of long-term data
storage or user authentication. Such features are not provided
by the pos experiment controller. But, as indicated, the benefit
of accepting this burden is a tighter control of the infrastruc-
ture. For example, some hosting testbeds may only provide
virtualized resources, thus limiting the experimenter’s control
over resources and potentially subjecting their experiments to
the actions of others.

While a pos testbed typically relies on a CLI to run ex-
periments, Jupyter notebook-based interaction is also feasible.
To run a Jupyter notebook-based experiment on the dedicated
pos testbed, the experimenter first needs to provision Jupyter
in a Python virtual environment on the testbed’s management
server. Once the Jupyter notebook is installed and running, the
experimenter needs to make this instance accessible, e.g., by
forwarding the respective port via SSH. After this setup phase,
experimenters can interact with pos either via the CLI or an
optional Python library.

B. Cloudlab

Neither Cloudlab nor pos are designed with a specific
experiment script format in mind. On the contrary, both
testbed and methodology are deliberately open in terms of

options available to their users. Thus, generally, any approach
to deploy the pos experiment controller would be feasible.
For consistent deployment across testbeds, we decided to
implement a Jupyter notebook-based deployment.

As highlighted in Section II-B2, to start an experiment on
Cloudlab for the deployment of the pos experiment controller,
a description of the experiment is required. I.e., among others,
the number of nodes and their type, their connections, and
disk image. For the pos experiment controller, a dedicated
experiment was created. Using a Debian bullseye cloud im-
age [24], we make use of Debian’s cloud-init [25] capabil-
ities to deploy Jupyter and setup scripts to install the pos
experiment controller to the experiment node. Once Cloudlab
provisioned the experiment node and cloud-init’s configuration
has concluded, a Jupyter instance is available. To set up the
pos experiment controller, the experimenter executes cells
of one of the provisioned setup scripts, a Jupyter notebook.
Since the pos experiment controller needs to impersonate
the experimenter when interacting with Cloudlab, the exper-
imenter will be asked to provide means to authenticate with
Cloudlab. Subsequent steps of this notebook will deploy pos
using Ansible. Finally, the deployment instantiates a second
Cloudlab experiment. Unless configured otherwise, two nodes
are instantiated and integrated into pos. With pos configured
and the sample topology in place, the second deployed Jupyter
notebook containing the sample experiment can be executed.
Figure 3d summarizes this implementation approach.

C. pos: Virtualized Deployment

The deployment of pos in the virtualized testbed differs
from the dedicated deployment described in Section IV-A.
E.g., access to the testbed is granted via a web-shell. Despite
that, the implementation of the virtualized and the dedicated
deployment do not differ as the features of pos used are
unchanged; this similarity is shown in Figure 3b. However, due
to the change in access to the testbed, the workflow changes
slightly: instead of running a Jupyter server on the manage-
ment node, we suggest converting the involved notebooks to
Python scripts and subsequently executing those.

D. Chameleon

Jupyter notebooks [22] are at the center of Chameleon’s
workflow. While the use of notebooks is not required, their use
is encouraged through the availability of APIs, examples, and
documentation on their integration. Given that a core concept
of the pos experiment controller is its embed-ability into
different testbed contexts, its implementation takes this into
account. Specifically, the pos experiment controller provides a
Python API to control experiments. As a result, the interaction
with the controller is well suited for Jupyter notebooks those
most prominent execution engine, called kernel, is for Python.

To run an experiment on Chameleon, a Jupyter notebook
should be provided on Chameleon’s experiment script shar-
ing platform Trovi. Thus, our implementation, as shown in
Figure 3c, follows this approach and consists of a Jupyter
notebook to interact with Chameleon. The provided Jupyter
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notebook attempts to allocate all resources, required for later
operation, in Chameleon. I.e., one node featuring the pos
experiment controller, the pos management node, and other
nodes used to conduct experiments with. E.g., for the experi-
ment discussed later, apart from the pos management node,
two experiment nodes are requested to function as device
under test and load generator.

After the required resources have been provided by
Chameleon, the implementation is otherwise unable to pro-
ceed, management and experiment nodes are configured. In
particular, the nodes’ disk images are set. While the man-
agement node is configured to run on Debian bullseye, the
experiment nodes are configured to boot iPXE [26].

We selected the former due to its proven reputation as a
stable and well-tested platform. Besides, the selection of a
PXE booting image is needed to apply the pos methodology.
As mentioned, this methodology includes live-booting the
experiment node’s operating system. To this end, PXE is used
to serve the desired operating system to the experiment nodes.
Even though numerous devices support PXE booting, its use
often requires BIOS reconfiguration. BIOS reconfiguration is
not supported on all hosted testbeds we encountered and may
suffer from partial or flaky PXE implementations. Therefore,
experiment nodes boot the iPXE PXE implementation and,
thus, mitigate these issues.

With the management node booted, the provided Jupyter
notebook will continue to set up a pos experiment controller
on the same. This setup step relies on Ansible [27] and, apart
from installing the software itself, ensures preconditions for
conducting experiments, such as the availability of bootable
images, are met.

Once the setup script concludes, a brief functionality test
is performed, to validate the success of the deployment. With
this test succeeding, the desired experiment may be performed.

The provided Jupyter notebook concludes with instructions
to tear down the setup, once all work has been performed. We
encourage releasing experiment resources instead of relying
on automatic experiment termination.

The specialization of the high-level architecture depicted
in Figure 2 for the implementation in Chameleon is shown in
Figure 3c. Of particular note is the interaction with Trovi as an
additional service. Trovi hosts the Jupyter notebook describing
the experiment. Another specialization is the way each testbed
allocates resources and how to map the pos experiments onto
the hosting testbed: In Chameleon, for integration of the pos
experiment controller, both management and experiment nodes
can be part of a single experiment. On Cloudlab, we use two
separate experiments for management node and the experiment
nodes.

V. EVALUATION

To show the usability of the developed pos experiment con-
troller, we revisit a previously conducted pos experiment [6]
on the three supported testbeds: our local pos deployment,
the Chameleon, and the Cloudlab testbed. The considered
experiment investigates the achievable throughput of a device

pos Manage-
ment Node

DuT LoadGen Evaluator

Fig. 4: Experiment setup

under test (DuT), when subjected to constant bit rate traffic
by a load generator (LoadGen). Evaluation of the experiment
observations is done thereafter by an evaluator script. Man-
agement of the experiment is done by the pos experiment
controller. Both, DuT and LoadGen run on a Debian buster
live system. Figure 4 depicts the overall experiment setup.
There, the test traffic is generated by MoonGen [28] on the
load generator.

The nature of the traffic is varied between different experi-
ment rounds depending on two parameters. The first parameter
is the packet size, here, either 64B or 1450B. Ranging from
10 kpps to 3000 kpps, the second parameter is the requested
packet rate. The packet size is chosen to reflect both the
smallest and the largest possible packet size transmittable
without fragmentation on any of the investigated testbeds. In
particular, on Chameleon, the usual MTU of 1500B is not
available, possibly due to the use of VXLAN as a tunneling
protocol between the running virtual machines.

From the load generator, the generated traffic is sent to
the DuT. The latter is configured to act as a Linux-based
forwarder, i.e., traffic received on the ingress interface is
emitted unchanged on the egress interface. Packets from the
DuT’s egress then arrive again at the load generator.

Experiments are described via and were conducted from
Jupyter notebooks [22]. While the pos framework, and, thus
also, the pos experiment controller is agnostic to the language
used to contain experiment instructions, there is a noticeable
preference for this format by, e.g., the Chameleon community.

Figure 5 summarizes the measurement results obtained from
executing the same experiment scripts on multiple testbeds.
The individual results are discussed in more detail hereafter.

A. pos: Dedicated Deployment

For the dedicated deployment, the experiment was con-
ducted on two dedicated machines. A DuT featuring an Intel
Xeon E5-2640 v2 running at 2.0GHz with 32GB of memory.
As load generator, we used an Intel Xeon E5-2640 v2 with
16GB RAM. Both DuT and LoadGen were equipped with
a 10Gbps Intel X540-AT2. Results in Figure 5a indicate
a linear relationship between requested and received traffic
for generated packet rates below 0.5Mpps. There, for every
investigated combination of the parameter, the DuT was able
to forward the traffic such that the load generator received
any packets sent. For larger packet rates, however, results
are more diverse. Here, the load generator’s transmitted rate
continues to grow linearly until approximately 2Mpps and
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(c) Virtualized pos deployment

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

pkt rate [Mpps]

A
ve
ra
ge

P
ac
ke
t
R
at
e
[M

p
p
s] 64 B TX 64B RX 1450B TX 1450B RX

(d) Chameleon

Fig. 5: Measurement result comparison: same experiment on
different testbeds—two bare-metal (top) and two virtualized

1Mpps for packets of size 64B and 1450B, respectively.
Afterward, despite requesting higher packet rates, the load
generator is unable to comply. In contrast to that, the packet
transmitted back from the DuT, independent of the packet size,
never surpasses a rate of just below 0.5Mpps.

B. Cloudlab

The Cloudlab experiment used two machines of type
c220g2 for the LoadGen and DuT. These nodes feature an
Intel Xeon E5-2660 v3, running at 2.2GHz, as well as 160GB
RAM each. Moreover, this node type has dual-port Intel X520
NICs, which were used as experiment interfaces. Similar to the
dedicated deployment, the results in Figure 5b show a linear
relationship between requested and received traffic. I.e., with
the given experiment, no deviation of the received traffic from
the requested traffic is noticeable.

C. pos: Virtualized Deployment

In the virtualized setting, the VMs are hosted on a system
equipped with two Intel Xeon Silver 4214 12-core CPUs run-
ning at 2.2GHz and with 384GB RAM. Apart from the pos
management node providing both orchestrator and controller,
two experiment nodes, provided by virtualized machines, are
provisioned on this host system. Each of the experiment nodes
is assigned four cores and 7.4GB of RAM. The virtualized
machines are connected via two virtual links provided by the
KVM-based hypervisor.

For both investigated packet sizes, the experiment results,
as depicted in Figure 5c, look alike. The load generator is,
for all investigated packet rates, able to provide the requested
load. As a result, the observed transmit rates grow linearly.
The packet rate received from the DuT behaves differently.
While a linear increase is observable for packet rates up to
0.05Mpps, for larger packet rates, the received rate remains
roughly constant.

D. Chameleon

Depending on the site used, the Chameleon testbed of-
fers both physical and virtualized resources. For this exper-

iments, we used two virtualized m1.xlarge instances in
KVM@TACC as DuT and LoadGen, respectively. Such an
instance amounts to an 8-core Intel Haswell CPU running at
2.3GHz with 16GB of memory and VirtIO network devices
for the experiment. In contrast to the dedicated deployment,
the results in this setting are more diverse.

Looking at the 64B case, a linear relationship between
requested and received traffic is visible for packet rates up
to 0.05Mpps. For larger packet rates, the load generator con-
tinues to generate faithfully, up until about 0.075Mpps. After
that point, the generated packet rate remains, roughly, constant.
Though the number of generated packets keeps increasing,
after the mentioned point at 0.05Mpps, the LoadGen fails to
receive more than approximately 0.05Mpps for higher rates.
A similar behavior can be observed for the 1450B case.

Regardless of the packet size, the observations are likely
due to the same underlying effects. While initially, the DuT is
capable of handling every packet, at some rate, this changes.
Thus, after this point, 0.05Mpps, the load generator only
receives the subset of traffic the DuT was able to process; this
marks the CPU bottleneck. For even higher rates, the network
begins to falter. Hence, while capable, the load generator is
unable to increase pressure on the DuT. A subsequent test with
iperf3 [29] validates this begin of the network bottleneck
at about 520Mbit/s.

E. Experiment Result Comparison

We conduct a simple throughput measurement on four
different testbeds and with four different device configurations.
Even though the experiment devices appear comparable in
terms of CPU and memory specifications, the results differ.
While for both the dedicated pos deployment as well as the
Cloudlab testbed, the DuT was able to fulfill the forwarding
demand imposed by the load generator, this was not the
case in the Chameleon testbed configuration. However, it is
important to highlight that this is not a shortcoming of the
Chameleon testbed itself. The observed differences in packet
generation performance between the Chameleon testbed and
the other two testbeds are likely due to the difference in
maximum CPU clock speed. While the machines selected in
latter cases offer up to 3.3GHz, the environment in the former
is limited to 2.0GHz. Since the packet generation in this
experiment is single threaded, this reduced CPU clock rate also
limits the load generator’s capability. Additionally, running the
experiment virtualized is unlikely to improve performance.
Finally, the exact properties of the connection between the
load generator and the DuT are unknown. Though MoonGen,
due to the DPDK implementation [30], will report the link as
10Gbps, neither it nor the Linux kernel or OpenStack have
information on the link speed. Additional tests with iperf3
suggest a link bandwidth of about 520Mbit/s.

VI. CONCLUSION

The contiguous influx of new network applications with
ever-tightening demands calls for a repeated revision of
research methods and tooling. One answer to this call is
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presented in this paper: the pos experiment controller. By
lifting the pos framework and methodology from fixed testbed
deployments to a solution that is deployable across different
testbeds, researchers are enabled to move from repeatable to
likely-replicable experiments. Further, the use of the pos ex-
periment controller reduces researchers’ dependency on single
testbeds and, therefore, eases collaboration. After presenting
the general architecture of the pos experiment controller, cf.
Section III, we discussed its implementation in Section IV. To
demonstrate how experiments can be conducted using the pos
experiment controller, we performed and evaluated a simple
measurement in Section V. The code used to conduct the
experiments is available online [31].

Availability of the pos experiment controller and its imple-
mentation for selected testbeds enables two new challenges to
pursue: 1) enhancing the implementation to be deployable in
further testbeds, and 2) applying the pos framework to new and
existing experiments to afterward evaluate their replicability.
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H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, and T. C.
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