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ABSTRACT
Network digital twins commonly rely on Graph Neural Networks
(GNNs) as functional models. They typically predict network per-
formance metrics, such as latencies. Most approaches have one of
the following restrictions: they use simulated data, predict mean
values, or don’t utilize formal method results as inputs. We intro-
duce an approach that: (I) relies on data obtained from a hardware
testbed, increasing realism, (II) predicts quantiles in addition to
means, increasing flexibility and applicability, (III) uses the formal
method of network calculus to obtain input features, increasing
prediction accuracy. We show that latencies in hardware testbeds
can be predicted at different quantiles with median relative errors
between 8% and 29% using a simple GNN architecture. Further-
more, we show that network calculus bounds are especially useful
for predicting higher quantiles and that they mostly correct large
prediction errors.
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• Networks → Network performance modeling; Network mea-
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1 INTRODUCTION
Network digital twins are an important tool in network manage-
ment. Among other components, they consist of functional mod-
els [25]. Functional models for performance prediction typically
take the network state as an input and predict network performance
metrics. An important metric is the end-to-end latency of flows.
The prediction of performance metrics can be done in a variety
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Figure 1: Overview of the approach. Different quantiles (mini-
mum,median,𝜂90,𝜂99, maximum) and themean are predicted
using a GNN. The input consists of a network topology with
flow- and node descriptions. Additionally, we derive network
calculus worst-case bounds from the network description
and use them as input features for the GNN.

of ways, e.g., simulators, analytical methods, or machine-learning
approaches.

A common approach in literature is the prediction of mean end-
to-end latencies using Graph Neural Networks (GNNs). While scal-
ing very well, related works in this area typically suffer of a subset
of the following three disadvantages. First, they only predicts the
mean of a latency distribution, while many applications are more
reliant on other metrics, such as maximum latency. Second, addi-
tional information, such as results from formal methods, are rarely
considered as input features. These results can provide additional
information and are provably correct. Third, they rely on data ob-
tained by network simulators while aiming to model the behavior
of networks consisting of interconnected hardware devices.

We approach these three problems with the following methodol-
ogy. The prediction target is extended to include more characteristic
values of a latency distribution, namely a list of selected quantiles:
minimum, median, the 90𝑡ℎ percentile (𝜂90), the 99𝑡ℎ percentile
(𝜂99), and the maximum. Furthermore, we include worst-case la-
tency bounds from the formal method network calculus (NC), as
derived from network state, as input features for a GNN. Lastly, we
use data obtained from optical wire tapping in a physical network
with virtualized nodes where every packet traverses a Network In-
terface Card (NIC) and physical cable. Figure 1 shows an overview
of the approach.

We provide access to our datasets and results.
The remainder of the paper is structured as follows. Section 2

gives an overview of the background, Section 3 surveys related
work, Section 4 provides a detailed description of the methodol-
ogy, Section 5 presents our results, the limitations are discussed in
Section 6, before we conclude in Section 7.
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Figure 2: Measurement setup, adapted from [20]. Gray in-
terfaces are physical, orange interfaces are virtual network
functions. Red are physical cables, green is the flow path
through virtual machines. We assume a single flow travers-
ing from the top-, over the middle-, to the bottom node.

2 BACKGROUND
This section provides background information about virtualized
latency measurements, network calculus, and GNNs.

2.1 Virtualized Latency Measurements
Latency measurements of packets can be done in a multitude of
ways. They are typically more precise the closer the measurement
point is to hardware. When measurements are done on large-scale
topologies, a full hardware setup is costly. One approach tries to
mitigate the scaling issue by utilizing virtual machines and tries to
obtain precise results by staying close to hardware [20]. They pro-
vide a dataset of end-to-end flow latency measurements obtained
by wiretapping optical cables in a virtualized topology [21]. A flow
is defined as a sequence of UDP packets traversing the network on
a static path from sender to receiver. We note that the employed
virtualization technique, using virtual machines as nodes and virtu-
alized network functions as NICs, has the benefit of sending each
packet over a physical NIC and fiber optical cable. This means the
nodes in the network are virtualized but each frame traverses phys-
ical network infrastructure. The measurement setup, consisting of
three physical nodes, is shown in Figure 2. A load generator [6]
produces traffic for all traffic sources in the network. The traffic
is directed over different virtual network functions at the ingress
and egress interfaces of the device hosting the virtualized topology,
depending on its source and destination. The virtualized network
functions are generated using SR-IOV [20]. All frames are times-
tamped using a dedicated timestamper, connected to the ingress
and egress interface cables using optical splitters. We utilize this
dataset to train and evaluate our model.

2.2 Network Calculus
Network Calculus (NC) is a mathematical framework for worst-case
latency bounds in communication networks [5, 12]. It can be used to
calculate flow-level worst-case upper-bound end-to-end latencies.
The elemental objects of NC are arrival curves and service curves.
An arrival curve is an envelope for the amount of data sent by a
flow. A servive curve describes the amount of service a node can
provide, i.e., how much data can be processed. These curves can
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Figure 3: Arrival- and service curve, latency- and backlog
bound

take arbitrary non-decreasing shapes, however, they are typically
assumed to be concave and convex respectively. Simplified versions
are described by the token-bucket arrival curve and the rate-latency
service curve, piecewise linear functions with two parameters each.
The parameters describe the flow burst (𝑏) and long-term average
rate (𝑟 ), as well as the maximum processing delay (𝑇 ) and minimum
processing rate (𝑅). A worst-case latency bound is calculated by
determining the maximal horizontal deviation between the two
curves. An example is shown in Figure 3. The close-form expression
of the worst-case latency bound for token-bucket and rate-latency
curves is given in Equation (1).

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇 + 𝑏

𝑅
| 𝑟 ≤ 𝑅 (1)

Traversing multiple servers in series can be modeled using the
convolution operator on all service curves to obtain a single service
curve. Cross-traffic influences are modeled using left-over service
curves, which are service curves from which cross-traffic is de-
ducted. [12]

The tightness of the upper bound describes the accuracy of the
method, i.e., a quantification of the overhead between the worst-
case upper bound and the actual worst-case. This overhead is the
result of simplifications of the real-world conditions (inputs to
NC), or shortcomings of the method itself. There exist multiple NC
methods, among others, Total Flow Analysis (TFA), Separate Flow
Analysis (SFA), Pay Mulitplexing Only Once Analysis (PMOOA),
Tandem Matching Analysis (TMA), Unique Linear Program (ULP).
They typically provide a trade-off between tightness and compu-
tational cost. They form a partial order w.r.t. tightness due to the
fact that the tightness between SFA and PMOOA is not decidable
apriori [16]. The remaining methods form a total order. Note that
especially SFA provides tighter bounds than TFA [1] because it
utilizes the convolution- and left-over service curve operations.

2.3 Graph Neural Networks
Graph Neural Networks (GNNs) [14] are a neural network approach
that can work directly on graph-structured data. They achieve bet-
ter results on graph-structured data compared to other approaches
by exploiting the permutation invariance property of graphs. This
means that different representations of the same graph lead to
the same results, which is not fundamentally true for other ap-
proaches, such as Convolutional Neural Networks for image pro-
cessing. Geometric deep learning approaches, such as GNNs, can be
considered generalizations of many of these other neural network
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Work Ref. Year GNN Formal Method as Input Data Source Prediction Target

Rusek et al. [13] 2020 ✓ ✗ Simulation Normal, (gamma) distribution
Ferriol-Galmés et al. [7] 2022 ✓ ✗ Simulation Mean
Wang et al. [19] 2022 ✓ ✗ Simulation Mean per timestep
Yang et al. [23] 2022 ✓ ✗ Simulation Distribution (mean, 𝜂99 reported)
Zhang et al. [24] 2023 ✓ ✓ Simulation Mean
Suárez-Varela et al. [17] 2023 ✓ ✗ Hardware Testbed Mean

This Work — 2023 ✓ ✓ Hardware Testbed Mean + Quantiles

Table 1: An overview of related work in network performance prediction using GNNs

approaches [4]. An input graph is defined as 𝐺 = (𝑉 , 𝐸) where 𝑉
is a set of vertices and 𝐸 is a set of edges. Each vertex and edge
can be associated with a vector of features. These inputs are en-
coded into two matrices, the feature matrix, and the adjacency
matrix. During the training of GNNs, a message passing step and
an aggregation step are performed. The message passing exchanges
information along the edges of the graph, and the aggregation
collects the exchanged information into a hidden state at each ver-
tex. The aggregation is typically an invariant function, e.g., mean,
sum, or maximum. There exist different architectures around this
basic GNN concept, e.g., GCN [10], GraphSAGE [8], GAT [3, 18],
GIN [22].

3 RELATEDWORK
Rusek et al. proposed a GNN architecture to predict mean latencies
as well as normal- and gamma distributions of latencies in SDN
networks [13]. Ferriol-Galmés et al. improve on this by including
multiple schedulers, traffic models, replaying captured traffic, and
scaling the network size [7]. Wang et al. extend the prediction target
from mean to mean per timestep by utilizing a factorization-based
temporal approach [19]. Yang et al. predict latency distributions
of simulated data and report mean and 99𝑡ℎ percentile results [23].
Zhang et al. extend the work of Ferriol-Galmés et al. by using NC
results as inputs, reporting a decrease in prediction error of mean
targets [24]. Suárez-Varela et al. provide a real-world dataset [17]
and aGNNmodel architecture developed on simulation data. Table 1
provides an overview.

Our approach differs from relatedwork by using a combination of
formal-method-assisted GNNs, trained on measurements obtained
from a hardware testbed, and predicting five different quantiles
as point predictions in addition to mean values. Our approach
does not consider complex scheduling mechanisms and different
trafficmodels, like some related works do. Furthermore, we perform
point predictions and do not predict distributions. While predicting
distributions is generally the approach that should be preferred,
our approach does not require us to make any assumptions about
the target distribution, such as a normal distribution of values.

4 METHODOLOGY
This section describes the architecture, dataset, and training process
of our approach.

4.1 Architecture
The architecture of our approach is shown in Figure 1. Starting
from a network consisting of a topology, node specifications, and

Metric Min. Max.
∑

Number of networks — — 100
Number of flows 20 60 —
Number of egress interfaces 5 25 —
Flow length 2 9 —
Number of measured latency values — — 14,012 M

Table 2: Metrics of the dataset

flow specifications, we derive NC worst-case latency bounds using
the five methods TFA, SFA, PMOOA, TMA, and ULP. The network
as well as the NC bounds are used as input to a GNN, in our case
a GraphSAGE or GAT module. The GNN is trained to predict de-
scriptors of the latency distribution of each flow. The descriptors
are the mean as well as five quantiles: minimum, median, the 90𝑡ℎ

percentile (𝜂90), the 99𝑡ℎ percentile (𝜂99), and the maximum.

4.2 Dataset
The dataset [20] consists of 100 networks with unique topologies,
node configurations, and flow configurations. For each network,
there are measurements of the end-to-end flow latency of UDP
flows. Measurements are performed three times per configuration,
resulting in 175 data points (not all measurements were completed
successfully). The latencies are obtained by optical wiretaps directly
after the first egress interface and directly before the last node on the
flow path. Table 2 provides an overview of metrics from the dataset.
Figure 4 shows three example topologies and flow configurations.

Figure 5 shows a High Dynamic Range (HDR) histogram of the
measured end-to-end latencies over all networks. We can observe
stable latencies for lower quantiles and large outliers in latency
for higher quantiles. This indicates that the prediction of quantiles
above the median is a more complex task than predicting mean
values. Especially the maximum latencies can reach extreme val-
ues that might not directly correlate with the topology or flow
configurations of the network.

The NC worst-case latency bounds have been obtained by using
the NCorg DNC [2, 15] with a custom parsing backend. Bounds
for TFA and SFA have been obtained using the FIFO multiplexer,
while bounds for PMOOA, TMA, and ULP have been obtained using
the arbitrary multiplexer. Analysis of the latency bounds between
methods has shown that there was no increase in tightness for any
of the networks while using PMOOA, TMA, or ULP. Therefore, the
remainder of the paper concentrates on using TFA and SFA bounds.
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(a) Network I
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(b) Network II
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(c) Network III

Figure 4: Three example networks from the dataset, each line indicates the path of a single flow. Each node is a virtual machine
connected to each adjacent node via a NIC and physical cable.
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Figure 5: High Dynamic Range (HDR) histogram of end-to-
end flow latencies in the dataset

4.3 Training
The training process is challenging because of the small size of the
dataset. Therefore, we do not expect to obtain prediction errors
that are comparable to predictions on simulated datasets in related
work.

The training and inference are done by performing a 10-fold
cross-validation. During training, we observed that GraphSAGE
consistently provided better results compared to GAT. Therefore,
all results in Section 5 are based on GraphSAGE. A list of all hyper-
parameters can be found in Appendix A.

5 EVALUATION
This section presents and discusses our results.

5.1 Prediction Accuracy
Figure 6 shows the relative error for different prediction targets
with and without NC bounds support. We can observe that lower
quantiles are easier to predict while higher quantiles are harder
to predict as we see an increase in relative error. The inclusion
of NC bounds has no effect on the prediction of minimum and
median latencies. However, mean, 𝜂90, 𝜂99, and maximum latency
predictions benefit from the inclusion of NC bounds. The inclusion
reduces the maximum as well as the third-quartile prediction error.

Min. Median Mean η90 η99 Max.

Predicted Metric

0

1

2

3

R
el
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iv

e
E

rr
or

NC Bounds

False True

Figure 6: Relative error for different prediction targets with
and without NC bounds as input parameters. Lower- and
upper whiskers show minimum and maximum values re-
spectively.

To find a reason for this, we look at the error behavior w.r.t
different network parameters. Figure 7 shows the behavior of the
relative error (over all prediction targets) for different flow lengths.
We can observe that the relative error decreases with increasing
flow length. This is caused by the instability of latencies for shorter
flows. What we can further observe is that the inclusion of NC
bounds especially helps in reducing the error for longer flows.

Figure 8 shows the relative error scaling with the number of
flows in a network. We can observe that the number of flows has
no correlation with the relative error except for occasional spikes.
These spikes are mostly caused by latency outliers in the datasets
of single networks. The large latency values are a result of inter-
rupts in the measurement setup that are needed for operating the
virtual machines [20]. These outliers heavily skew the maximum
and percentile prediction targets without any correlation to the
network configuration and state. They are therefore hard to predict
without additional information.
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Figure 7: Relative error of predictions as they relate to flow
length (in number of hops)
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Figure 8: Relative error of predictions as they relate to the
number of flows in a network
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Figure 9: Relative error of predictions as they relate to the
number of egress interfaces in a network

Figure 9 shows the behavior of the relative error for varying
numbers of egress interfaces in a network. We can observe that
the error is larger for smaller networks and that the error gets
smaller the larger the network gets. This is again caused by latency
instabilities in smaller networks, similar to the flow length.

Next, we want to quantify the influence of different input pa-
rameters on the prediction accuracy. Figure 10 shows the feature
importance of each input parameter split into minimum, mean, and
maximum prediction targets. Other quantiles did not differ signifi-
cantly. We can observe that the egress interface link rate and the
flow burst have a relatively large influence on the predictions. This
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Figure 10: Feature importance of different input features
of the GNN. Split by prediction targets (minimum, mean,
maximum). Feature importance scores obtained using [11].
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Figure 11: Comparison between obtained TFA- and SFA
bounds. SFA bounds are always at least as tight as TFA bounds
(red line).

makes sense since they are the main contributors to queue build-
up and consequently latency increase. We can also see that their
influence increases when predicting maximum values compared to
mean or minimum. The NC bounds show an interesting behavior:
TFA bounds are mostly ignored for predictions while SFA bounds
have a large influence. Additionally, we can see that SFA bounds
are more important for predicting maximum latencies, as expected.

To identify why TFA bounds are largely ignored, we look at the
relationship between them and SFA bounds on a per-flow basis.
This is shown in Figure 11. We can observe that TFA bounds consis-
tently overestimate the worst-case latency bounds. This is a known
concept called Pay-Bursts-Only-Once which leads to the tighter
latency bounds of SFA [12].

5.2 Negative Results
Using other loss functions did not prove helpful in decreasing rela-
tive errors. Specifically, we used a quantile loss function for the six
prediction targets with quantile weights of 0.01, 0.5, 0.5, 0.90, 0.99,
and 0.999. This approach did not improve the results compared to
using the loss specified in Appendix A.
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6 LIMITATIONS
We have a dataset of only 100 networks, which is due to the expen-
sive nature of obtaining measurement data from hardware testbeds.
Therefore, the reported relative error values are not able to compete
with related work which is based on simulated network latencies.
This leads our focus to the relative differences between errors of
different prediction targets and NC-bound inclusion. Furthermore,
we only consider a stateless transport protocol (UDP), we refer to
Jaeger et al. [9] for models of a stateful transport protocol (TCP).
Due to the nature of NC, it is only possible to apply this method
to networks that don’t contain links with a utilization larger than
100%. To include such networks, it would be necessary to include a
binary input feature that indicates infinite latency bounds.

7 CONCLUSION
We provide an approach to predict end-to-end flow latency quan-
tiles, as measured in a hardware testbed, using a simple GNN. Ad-
ditionally, we incorporate worst-case end-to-end latency bounds
from the network calculus framework as input features to the GNN.
Showing that predicting higher quantiles becomes increasingly dif-
ficult and that network calculus bounds can remedy this to some
degree. We provide access to our dataset and to our results1.
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A APPENDIX

Parameter Value

Batch size 8
Dropout Linear 0.3
Dropout GRU 0.1
Epochs 300
Hidden size 4
Jumping knowledge True
Learning rate 0.0005
Loss function HuberLoss
LR scheduler ReduceLearningRateOnPlateau
LR scheduler factor 0.7
Model GraphSAGE
Number of message passing steps 4
Train-test split 0.8
Weight decay 0.0

Table 3: Hyperparameters for all models
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