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Abstract—The evolution of the cloud-computing technology has
allowed the instantiation of resources almost anywhere. Handheld
devices, edge/fog resources, and core cloud datacenters comprise
a resource continuum that can be used for hosting almost any
service. The rise of micro-services has allowed any application
to be hosted over any type of compute resource, regardless of
the underlying hardware architecture. In this work, we focus on
the far-edge devices that participate in the resource continuum,
located at the network access or the fog, and are usually resource
constrained. We evaluate two lightweight frameworks which
can be used for orchestrating micro-services on top of them.
Our evaluation presents experimental evidence in terms of their
capabilities for instantiating/tear-down of network services, and
their dynamic adaptation to external workloads by using the
respective horizontal scaling solutions, when tested under the
same experimental environment.

Index Terms—cloud-to-things continuum, orchestration, re-
source constrained edge, Nomad, K3s, autoscaling

I. INTRODUCTION

Cloud-native networking and applications provide advanced
flexibility for the deployment of network services across het-
erogeneous infrastructure elements, often supporting different
system architectures. Cloud-native approaches have gained a
lot of attention, as they are driven by the wide adoption of
micro-services and provide mechanisms for the overall moni-
toring and management of the deployed applications/services,
based on the observed behavior/metrics. The rise of micro-
services and the respective hypervisor software enable the
instantiation of different network functions regardless of the
specific architecture of the hosting worker node, thus allowing
the creation of a resource continuum that spans the user end-
devices, the network edge and the core cloud systems.

Since computational power even in handheld devices is con-
tinuously rising, an opportunity is created for even more de-
vices to participate in a joint access-fog-edge-cloud continuum
of resources; the resource continuum can be used for dynami-
cally deploying/instantiating/migrating services to/from central
cloud towards providing higher data security and integrity, and
faster algorithm execution without the overhead of transmitting
data over long distances. Moreover, network devices and users
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can benefit from local decisions and analytics with minimal
communication overhead, compared to transmitting data to the
core cloud. Nonetheless, orchestrating services within such
a resource continuum can be challenging, as the devices
that are closer to the edge (e.g. the end-devices, IoT in-
frastructure) might present links with fluctuating performance
for connecting to the network (e.g. wireless links) or might
have a nomadic behaviour (appearing/disappearing from the
network). To this aim, the orchestration and workload sharing
among such compute nodes has to be carefully considered
in order to meet the requirements in terms of resources per
each application/service workload, while the compute nodes
are connected to the network.

The evolution of orchestration software is constantly aug-
menting the network with new capabilities that need to be also
considered when dealing with resource-constrained equipment,
such as the automatic scaling of services. Most of such
frameworks nowadays support the horizontal scaling process;
subject to a monitored metric for the deployed services, a
new replica can be instantiated when the metric has reached a
trigger value, and through proxy services traffic is distributed
among the replicas. Similar to the aforementioned challenges,
the frameworks need to consider the worker nodes that will
host the replicas when autoscaling in the resource continuum.

In this work, we focus on the case of orchestrating services
at the far-edge network, which are traditionally resource-
constrained, and can be considered as handheld devices/IoT
gateway platforms. The limitation in the available resources
poses several constraints to the core orchestration software,
particularly regarding monitoring performance and service
instantiation, in the case that the workloads are not properly
balanced among the available devices. Given this behaviour,
the orchestration of services in such environments have to
meet certain demands in terms of instantiation times, tear-
down times, autoscaling and scheduling decisions.

Although there are a plethora of different orchestration
frameworks, some of them suitable for resource-constrained
devices, they do not support service data management and
analytics or horizontal scaling mechanisms, a vital disadvan-
tage for the optimal and efficient usage of compute resources.
For this reason we delve into two lightweight frameworks that
are the fastest solutions as shown in our prior work [10] and
suitable for the orchestration of micro-services over resource-
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constrained equipment, while providing monitoring and scal-
ing of the instantiated micro-services. The two frameworks we
concentrate on are Nomad [1] and K3s [2].

To this aim, we evaluate their performance for the tasks of
deploying and tearing down a service setup, under different
experimental settings. Since the frameworks provide the capa-
bilities to automatically scale the deployed services based on
monitored metrics, we concentrate on determining common
metrics and same triggering mechanisms for the autoscaling
process and benchmark their operation.

The rest of the paper is organized as follows: Section II
presents relevant works in literature which are our motivation.
Section III presents our system architecture and experimental
setup. Section IV describes our experimental results and dis-
cusses the applicability of each framework. Finally, in Section
V we conclude our work.

II. RELATED WORK

Orchestration on resource constrained devices has gained
lots of attention in relevant literature, as the end-devices
continue to gain more computational power. They usually
apply more to the IoT sector, where the end-devices (e.g.
gateways) can host small workloads of micro-services. In
[3], the applicability of the Docker framework as an edge
orchestrator framework is evaluated. The authors evaluate
Docker Swarm regarding four different requirements namely
the deployment and termination of instantiated services, the
resource service management, fault tolerance and caching, and
conclude that Docker is a viable candidate for orchestrating
micro-services in edge and fog computing deployments.

In [4], authors explore the resource continuum between
cloud, edge and fog in order to eliminate gaps in resources
between the different infrastructure layers in a dynamic IoT
environment. They further implement a monitoring system
augmented with Artificial Intelligence functionalities that in-
tegrates with the orchestrator software which handles the
migration of micro-services hosted on edge nodes horizontally
(between edge nodes) and vertically (between edge and fog
nodes) based on the load conditions of the hosted infras-
tructure. Similarly, in [5], authors compare three different or-
chestration tools based on their capabilities to manage cluster
nodes, the deployment of the application on a specific host
according to its needs and the ability of the orchestrator to
ensure mapping of device resources (CPU, RAM, Storage,
Serial ports) to the containerized applications. Authors in [6]
develop a fog computing framework in order to run applica-
tions on resource constrained devices such as Raspberry Pi.
In fact, after their comparison between multiple orchestrators
(Docker Swarm, Kubernetes, Apache Mesos) they conclude on
using Docker Swarm with several extensions in order to create
IoT applications on fog infrastructure. In [7], authors create
clusters of resource-constrained devices and present their
efforts regarding an Edge Cloud Platform as a Service (PaaS).
They evaluate the same frameworks and build extensions to the
Docker Swarm orchestrator in conjunction with the TOSCA
standard, for effectively handling their cluster.

As network conditions for such devices may fluctuate, some
works focus on the scheduling decisions for the worker nodes.
In [8], the expediency and performance of the Kubernetes
framework is evaluated for deploying and orchestrating dis-
tributed IoT containerized services over resource-constrained
Raspberry-Pi devices. A set of extensions to the core Kuber-
netes framework is suggested, for making it compatible with
fog-computing applications, while their evaluation proves to
be more efficient in terms of communication cost and optimal
node selection. Authors in [9] introduce a network aware
approach for Kubernetes with a more efficient resource allo-
cation scheduling for IoT based services in a fog environment.
They provide evidence on the efficiency of their mechanism,
introduced as an extension to the Kubernetes scheduler, in
terms of service provisioning regarding network latency. In our
prior work [10] we provided a deep comparison of the state-of-
the art orchestration software regarding the deployment time
of different virtual-machines and micro-services. We showed
that Nomad and Kubernetes (K8s) are the fastest solutions
regarding the other competitors (e.g. the Eclipse Fog05 [11]
framework) for the deployment of applications in datacenters.

Most of existing literature focuses on frameworks that have
been designed for datacenter operations, and apply/extend
them to meet resource constrained resources in the edge
domain. In this work, we seek to quantify the differences in
instantation and tear-down time on frameworks that are best
suited for resource constrained devices. We start from frame-
works that are built around this ecosystem, and assume that
resources can dynamically appear/disappear from the resource
pool, and thus can more efficiently orchestrate services over
such equipment. The frameworks are initially evaluated in a
similar manner as in [12], for different metrics and varying
load of services. We progress beyond such works by evaluating
5G-oriented services, and exploring the autoscaling features of
the frameworks, for replicating services according to the load
that each one receives. In the following section, we detail our
system architecture and the under-study frameworks.

III. SYSTEM ARCHITECTURE AND TESTBED SETUP

In this section we describe the overall system architecture
in conjunction with the selected tools and methodology used
in the experimental process. In order to create our resource-
constrained datacenter, we used a 3-node cluster setup hosted
in the NITOS testbed [13]. The nodes used are based on the
low-cost single board Raspberry Pi (Rpi) 3 Model B+ devices.
Such devices offer significantly better response times for the
end-user and faster processing speed for low computational
tasks than their previous generation, matching the computa-
tional power that a contemporary fog device shall have. A
complete list of the device and the selected framework releases
with respect to the experimental scenario is shown in Table I.

Regarding the experimental architecture the nodes are orga-
nized in a 3-node cluster setup fully isolated from the rest of
the testbed, as shown in Figure 1. One node is selected to act
as a master node, while the remaining two as workers. The
former hosts the under-study orchestration frameworks, while
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TABLE I: Equipment parameters

Equipment Parameters Values
Processor 64-bit quad-core ARM Cortex-A53 1.4GHz
RAM 1 GB LPDDR2 SDRAM
Hard Disk 15 GB HDD
Operating System Raspbian GNU/Linux 10 (buster)
Networking 100 Mbps Ethernet
Docker images Ubuntu:18.04.03 (bionic), Redis:3.2,

Wordpress:latest
K3s version v.1.18.6+k3s1, commit: 6f56fa1,

branch: master1

K3s Autoscaler v2beta2
Nomad version v.0.12.0, commit: 8f7fbc8,

branch: master2

Nomad Autoscaler v.0.1.03

USRP device USRP B205mini-i
1 https://github.com/rancher/k3s
2 https://github.com/hashicorp/nomad/
3 https://releases.hashicorp.com/nomad-autoscaler/0.1.0/

the latter are the compute infrastructure where the applications
and micro-services for our experiments are deployed.The two
under-study frameworks, which have been selected as the
optimal approaches for orchestration in resource constrained
devices are Hashicorp Nomad [1] and K3s [2].

Nomad has been designed and developed by HaschiCorp,
and is based and optimized on the principle that nodes used as
the compute infrastructure can present a nomadic behaviour
(e.g. a Smartphone that is present in an area), thus making
it ideal for fog computing setups. Nomad is optimized for
orchestration of applications as docker containers. In addition,
Nomad provides an autoscaling daemon, namely Nomad Au-
toscaler [14], equipped with the necessary plugins in order to
support the connection with metrics sources and scaling both
targets and algorithms. Nomad Autoscaler supports Horizontal
application autoscaling, Horizontal Cluster autoscaling and
Dynamic application sizing.

On the other hand, K3s is a light-weight form of the
Kubernetes (K8s) framework [15], which is widely considered
for edge-based orchestration. Nowadays, K8s claims to be one
of the most successful open-source orchestration platform not
only compatible with docker containers, but also suitable for
the majority of container technologies. K8s provides integrated
monitoring functionalities as well, for checking and healing the
application’s health, efficient resource allocation of resources
and storage organization, automated load-balancing and repli-
cation of high traffic containers, management application’s
runtime state and control of the deployments and updates. K3s
is a lightweight distribution of the K8s framework, designed
and developed especially for IoT and edge computing use
cases. Its simplified architecture is infrastructure agnostic,
allowing it to run over several platforms, spanning from
ARM based edge devices to large datacenters. Regarding the
architecture, K8s and K3s consist of a plethora of components
offering management of the deployed instances, as well as
setup and configuration of the underlying network between the
applications, and the manner in which they are exposed, using
dedicated services for DNS and proxy entry-points for the
applications. In addition, they provide a set of APIs and tools
employing both a resource and a controller component in order

(a) Deployment of three services on distributed nodes

(b) Deployment of the srsLTE stack on a single node

Fig. 1: Testbed Deployment for measurement collection

to perform autoscaling operations. The provided autoscaler
functionality provides several functionalities, supporting both
pod and node based scaling, namely Horizontal, Vertical and
Cluster autoscaling.

Regarding the orchestration process, we present two dif-
ferent types of experiments. Initially, regarding the first type
of experiments, we experiment with four different scenarios
of variable complexity for the deployed application. Through
these experiments, we foresee to test and compare the orches-
trator frameworks (Nomad and K3s) for applications with dif-
ferent load characteristics. For the second type of experiments
we test the orchestrator engines regarding their autoscaling
mechanisms in order to evaluate their behavior under more
hardware independent scenarios.

We choose to compare these orchestrator engines due to the
claimed fast deployment times and the variety of integrated
functionalities offered by K3s and K8s. Since the resources
that we use as our fog datacenter are heavily constrained
(for the Raspberry-pi 3B+ device, RAM is limited to 1GB),
running K8s on top is not a feasible solution. As a result we
use the lightweight distribution of K8s, the K3s framework.

The first type of experiments span three different scenarios
based on the deployed docker images: 1) a simple Ubuntu
18.04 version bionic (45.8 Mb), 2) a Redis version 3.2 (57.9
Mb) and 3) a WordPress (407 Mb) installation that moves
from the very low complexity Ubuntu to a higher complexity
WordPress scenario for instantiation. In addition, in order to
stress test the frameworks, we employed an Ubuntu based
docker image that hosts the srsLTE [16] open source LTE
software and creates a real 4G network with a compatible
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(c) Wordpress deployment

Fig. 2: Deployment time for deployed VNFs

Software Defined Radio (SDR) front-end. The aforementioned
image hosts together the eNodeB and Evolved Packet Core
(EPC) as the running applications.

Regarding the second type of experiments, we experiment
with the horizontal autoscaling mechanisms of the orchestrator
platforms. To this need we employed a custom docker image
(262 MB) deploying a web server. The respective image serves
a PHP webpage which performs very intensive CPU computa-
tions whenever a request is received. In order to generate load
and test each orchestartor’s horizontal autoscaling mechanism
we used exactly the same procedure by creating a script that
sends an infinite loop of queries to the service. As a result
to stress the container’s CPU in order to exceed a configured
target CPU limit and force the frameworks to spawn a number
of new replicas. We configure both solutions with the same set
of tools deployed in the 3-node cluster that support the scaling
process; cadvisor, node-exporter, prometheus and Grafana are
deployed as containers in the system, allowing their use from
both frameworks for scraping metrics and visualizing them.
The metric which we monitor, and the frameworks evaluate for
scaling the deployed services is the average CPU utilization
of the deployed container regarding the maximum limit of its
CPU resources as described by equation 1,∑N

i=1 R(container CPU usage seconds) ∗ 1400∑M
i=1 container CPU shares

∗100

(1)
where M is the number of deployed containers on the worker
node, N is the subset of services changing the specific metric
on a container, R is the rate function of the specific metric up-
dated over the last minute, the container cpu usage seconds
is the time that a monitored container occupies the worker
node’s CPU, multiplied by the maximum number of MHz
supported by our worker nodes (1400 MHz) and con-
tainer CPU shares is the maximum shares in CPU power that
each container is limited to get from the docker hypervisor
(measured in MHz). The metric is further handled to provide
us with the percentage of CPU utilization.

IV. EXPERIMENTAL EVALUATION

In this section we present our experimental results. As
we mentioned we benchmark the orchestrator frameworks
(Nomad, K3s) regarding the deployment and tear-down time
of a number of services with different load characteristics.

We also compare the horizontal autoscaling functionality of
the frameworks. In order to present more accurate experiment
results we run every case of each scenario 20 different times
and present the mean values per each experiment.

For the first three scenarios (Ubuntu, Redis, WordPress)
we compare the two orchestrator frameworks regarding the
provisioning time needed for the deployment and tear-down
of the services. Regarding the deployment time, we measure
from the time we request to deploy the services from the
orchestration engine until the services become fully func-
tional and the deployed applications have network access.
Specifically for the srsLTE scenario, the deployment time is
measured from the time we request to deploy the service
until the core network (EPC) and eNodeB applications are
launched and communicate with each other, so as the LTE
network is fully functional. Similarly, for the tear-down time
we measure from time we request to destroy the deployed
services from the orchestrator until they are actually deleted
from the worker nodes, including their attached networks. For
each scenario we present values of an increasing number of
deployed applications with exactly the same docker image
hosted both on a single worker node or distributed equally
on different worker nodes. For all the different scenarios, the
respective docker images are already present on the worker
nodes, in order for us to test the actual deployment time for
each of the orchestration frameworks, without the additional
time and the fluctuating network overhead to fetch the images
from a local or remote registry.

A. Load-based Measurements

1) Ubuntu-Zero load scenario: For the first experimental
scenario we measure the provisioning time needed for the
instantiation of simple Ubuntu 18.04.03 docker container on a
single- and multi-node setup, when workloads are distributed
equally on different worker nodes. For each case we have a
limitation of up to 7 deployed containers per compute node
due to the physical limitations from the Rpi’s resources. As
we range the number of containers for the different setups
(single and distributed setups), Nomad presents better behavior
regarding the deployment time than K3s (Figure 2a). K3s
is consistently 2-3 sec slower for all the experiment cases
regarding the different number of deployed containers. In fact,
up to the deployment of seven containers, Nomad proves to be
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Fig. 3: Deletion time for deployed VNFs

significantly faster for single and distributed nodes cases than
K3s. The obtained results are illustrated in Figure 2a. Similarly
as we can observe in Figure 3a the tear-down times of Ubuntu
based services seems to have the same chronological pattern
with the deployment time. Nomad orchestrator engine is
approx. 1.6 sec faster for small number of instantiated services,
while after the deployment of 5 and 7 Ubuntu containers this
time interval between the orchestrators increases up to 2 secs.

2) Redis-Low load scenario: For the second scenario, we
orchestrated a low complexity Redis application. The instan-
tiated services provide an open source networked, in-memory,
key-value data store that operates as a data structure server.
As we can observe in both Figures 2b and 3b there are
not significant deviations regarding the deployment and tear
down times between the specific application and the previous
experiment scenario, due to their similar load levels.

3) Wordpress-High load scenario: Similarly as before, we
measure the provisioning time for the deployment and tear-
down of a WordPress application. The deployed application
provides a content management system (CMS) based on PHP
and MySQL. For every case of different number of deployed
services, for both orchestrators frameworks, the processes of
instantiation and deletion of WordPress applications is slower
than before due to the high complexity workload level of
the service. Regarding the tear down time of the instantiated
WordPress services, K3s is up to 2 sec slower than Nomad
for every number of deployed applications. Similarly, focusing
on the deployment time, Nomad framework presents again
better behavior than K3s for all the deployment cases while
in contrast with K3s presents a gradually increment of de-
ployment time regarding the number of instantiated containers.
In fact, as we change the number of containers, we observe
that K3s framework is affected and presents an exponential
increase in the deployment time especially for the cases of 5
and 7 instantiated containers hosted on a single compute node.
Similar performance is observed for the case of 14 instantiated
containers distributed equally over the two compute nodes.
As a result, we can conclude that K3s framework faces
performance issues when deploying on the same host a major
number of high load demanding services. The obtained results
are illustrated in Figures 2c and 3c.

4) srsLTE-Very High load scenario: We conclude the load-
based experiments by stress testing the reference architecture

 0

 5

 10

 15

 20

In
s
ta

n
ti
a
ti
o
n
 t
im

e
 (

s
e
c
)

Nomad Single K3s Single

(a) LTE network deployment

 0

 0.5

 1

 1.5

 2

 2.5

 3
T

e
a
rd

o
w

n
 t
im

e
 (

s
e
c
)

Nomad Single K3s Single

(b) LTE network deletion

Fig. 4: Deployment and Tear-down time for the srseNB platform

with the deployment of an application that hosts the LTE
software and creates a real 4G network. Due to the very
high resource demanding workload, as we can observe the
deployment time of a single container from both orchestrator
platforms is at least twice higher compared to the WordPress
scenario. In addition, focusing on the comparison between the
two frameworks, Nomad presents better behavior regarding
both the deployment and tear-down time of a single service
as it is 4 and 1.5 sec faster accordingly. The obtained results
are illustrated in Figures 4a and 4b.

B. Autoscaling Measurements

Similarly with the previous scenarios, for the horizon-
tal autoscaling experiment we compare the two orchestrator
frameworks regarding the provisioning time needed for scaling
out/in the deployments under the same settings. Regarding
the deployment time, we measure from the time we start to
generate load to the deployed container until the creation of
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Fig. 5: Autoscaling evaluation for the two under-study frameworks

two new replicas (scale out). Similarly, for the tear-down time
we measured from time we stop the generated load until the
deletion of the two deployed replicas (scale in). For both
frameworks, we use the same intervals for scraping metrics
from the deployed application with Prometheus, intervals for
evaluating metrics at the orchestrator side (comparing with the
target value), evaluation windows and cool-down timers.

For both frameworks, we set the target limit of the average
CPU utilization metric equal to 40 percent for both scale
out and scale in operations. As we can observe in Figure
5a, the deployment time for both frameworks are above 100
sec, due to the time waiting until the generated load reach
the target of the average CPU utilization metric. In order
to examine the autoscaler behavior, we experimented with
different evaluation periods. In fact, the autoscalers evaluations
periods were tuned to 5, 25, 40, 45 seconds accordingly, which
describes how often the autoscaler policy will be evaluated in
order to make scaling decisions. For both cases (scale out
and scale in), Nomad autoscaler presents a faster behavior
than K3s. As shown in Figures 5a and 5b, with respect to
the scale out operation, Nomad is constantly 5-9 sec faster
than K3s on deploying 2 new replicas for all the cases of
different evaluation metrics. Similarly, regarding the scale in
operation, Nomad autoscaler is proven to be better, as it is
2-3 sec faster on deleting the 2 new replicas for every case of
different evaluation period.

V. CONCLUSION

In this work, we explored the potential of resource-
constrained end devices participating in a resource continuum
spanning the end-user access, edge, fog and core network. In
this context, we focused on two frameworks that are adver-
tised as ideal for light-weight deployments, namely Nomad
and K3s. Nomad shows that in all the under-study cases
for deployment/tear-down/autoscaling of services outperforms
K3s. This fact and bundled with the existing results from our
previous work, places Nomad as the ideal solution for fast
deployment of services across the entire resource continuum,
especially when considering imminent fluctuations in the end-
user connectivity with the rest of the infrastructure. In the
future, we foresee to delve into the opportunistic federation of

cloud infrastructures, based on the estimated workload, subject
to end-user limitations (e.g. battery life, network capacity).
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