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Abstract—Multi-access Edge Computing (MEC) has been con-
sidered one of the most prominent enablers for low-latency
access to services provided over the telecommunications network.
Nevertheless, client mobility, as well as external factors which
impact the communication channel can severely deteriorate the
eventual user-perceived latency times. Such processes can be
averted by migrating the provided services to other edges,
while the end-user changes their base station association as
they move within the serviced region. In this work, we start
from an entirely virtualized cloud-native 5G network based on
the OpenAirInterface platform and develop our architecture for
providing seamless live migration of edge services. On top of
this infrastructure, we employ a Deep Reinforcement Learning
(DRL) approach that is able to proactively relocate services to
new edges, subject to the user’s multi-cell latency measurements
and the workload status of the servers. We evaluate our scheme
in a testbed setup by emulating mobility using realistic mobility
patterns and workloads from real-world clusters. Our results
denote that our scheme is capable sustain low-latency values for
the end users, based on their mobility within the serviced region.

Index Terms—Multi-access Edge Computing, Beyond 5G,
Cloud-Native network, AI/ML, OpenAirInterface, Kubernetes

I. INTRODUCTION

Multi-access Edge Computing (MEC) has been considered
as a key technology for minimizing service access delay, by
appropriately moving the services closer to the end-users, aka
the network edge. The deployment of such edge functionality
has been boosted by the definition of the 5G Service Based
Architecture (SBA) for the 5G Core Network (5GCN) [1] that
allows the breakout of user traffic generated and exchanged
within the telecommunications network through the User Plane
Function (UPF). Within the 5G architecture, UPF can be
placed at the network edge, and when combined with services
being deployed close to it, can enable low latency time for
reaching these services, avoiding transmissions of traffic over
long distances to the operator datacenters where usually the
5GCN resides.

Given that such MEC functionality is inherently supported
within the existing and upcoming next-generation telecommu-
nication networks, it is crucial that their service model com-
plies with client mobility. As such networks provide ubiquitous
access, clients can freely move around and get service through
different cells. For such cases, MEC and associated services
need to inherently adapt to the new locations of the users,
towards maintaining low service access latency for their users.
This, in turn, means that the provided services need to be

migrated to new locations throughout their operation, towards
ensuring seamless low-latency access.

Network Functions Virtualization (NFV) is a key technology
for supporting the aforementioned functionality. By decou-
pling the provided services from the underlying hardware, both
functions of the operator (e.g. 5GCN UPF) as well as offered
services (e.g. Voice over IP, Video on Demand, etc.) can
be executed as microservices, even on resource-constrained
equipment on edge. This further allows their seamless (in
several cases) migration to new hosts, in order to support client
mobility.

Furthermore, localization in 5G networks is becoming an
increasingly important aspect to consider [2]. The Location
Management Function (LMF) allows for the efficient tracking
and management of user locations within the network, provid-
ing real-time information about the coverage needs. This infor-
mation can be used to optimize handover and service migration
decisions, ensuring that services are always placed in the most
appropriate location to support client mobility. Similar to this,
the ETSI MEC working group has specified interfaces and
functions for retrieving statistics from the radio network, with
the aim to optimize the edge service deployments [3].

Additionally, incorporating Machine Learning (ML) and Ar-
tificial Intelligence (AI) approaches can significantly improve
the service migration process. AI-based algorithms can be used
to predict user mobility patterns and the load of edge servers,
allowing proactive service migration decisions. This can help
to ensure a seamless user experience, providing low-latency,
high-quality services to users, even as services are migrated
to new locations.

In this work, we use the state-of-the-art service orchestrator
Kubernetes (k8s) in order to deploy the telecommunications
network (5G RAN and CN) and accompanying services.
On this setup, we develop the needed functionality towards
enabling live migration capabilities for the edge services. On
top, towards enabling accurate migration decisions, we employ
DRL architectures that are able to learn the optimal migration
decision policy based on the user’s localization information
and the edge workload observations. Our contributions are
summarized as follows:
• To provide a seamless MEC experience to moving users of

the network by exploiting our developed edge infrastructure.
• To enable continuous and uninterrupted low-latency access

to services deployed on the network edge.
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• To model the service migration environment as a Markov
Decision Process (MDP) problem, and to design a reward
function that incorporates migration cost penalties to guide
the decision-making process.

• To implement DRL algorithms on top of our environments
and to compare their performance.

• To select the optimal target location for the edge services by
taking advantage of the user’s localization, utilizing a DRL
agent.

• To evaluate and integrate the developed approach in a real
5G edge setup, using realistic mobility patterns and real-
world edge workload dataset.
The rest of the paper is organized as follows. Section

II shows related works found in recent literature, and how
our work differentiates from them. Section III shows our
architecture and our contributions towards supporting such
functionality. In Section IV we present our experimental
findings, and in Section V we conclude this work.

II. RELATED WORK

Multi-access Edge Computing (MEC) is considered to
be the main enabler for low-latency service access in 5G
communications. Through the definition of the 5GCN in
a disaggregated manner and executing it using the Service
Based Architecture [1], MEC can be truly realized in a low-
cost manner, allowing service providers to take advantage
of the network edges for providing selected services with
low latency. Such applications are of particular interest to
the IoT community, as for certain use cases low latency
access and edge selection can be beneficial for the services
offered over the top. In [4], authors discuss the role of MEC
in 5G and IoT, and demonstrate how IoT applications can
benefit from a MEC-enabled 5G network with a use case that
utilizes MEC to achieve edge intelligence in IoT scenarios.
Authors in [5] exploit the Virtual Machine (VM) technology
in order to provide migration capabilities in such IoT edge
scenarios, while at the same time reducing the loading time
of the VM-based application by mangling the transferred
files from each edge host. In [6], the authors model the
problem of MEC location selection in an IoT environment as
a multiattribute decision-making problem, based on SDN and
NFV. In this work, the authors are able to reduce the server
response time and improve the quality of the user service
experience. Specifically to the 5G network model, authors
in [7] present a 5G network architecture together with its
network management capabilities, complementing MEC with
the connectivity service. The authors address different classes
of use cases and applications and evaluate their approach in
a testbed setup. Subject to client mobility, modeling the best
wireless channel association and service placement within the
network is not a trivial task [8], especially when trying to
meet a minimum Service Level Agreement (SLA) on latency
with the end-user. In [9], authors argue on the applicability of
MEC to a vehicular environment where services are replicated
across different hosts and prove that their approach can prune

the end-to-end communication latency. In [10], authors try to
develop MEC solutions coupled with user mobility, for the
fast relocation of service instances to guarantee the desired
Quality of Experience. The authors use containers for hosting
the services and develop a framework where proactive service
replication for stateless applications is exploited to drastically
reduce the time of service migration. In [11] and [12], au-
thors explore the Checkpoint/Restore In Userspace (CRIU)
technology to migrate containerized services to different hosts
subject to client mobility. Although CRIU provides the ability
to migrate stateful applications as well, it fails to address
different types of protocols supported in the telecommuni-
cations network environment, such as the SCTP protocol
for the N1/N2 interface between the Access and Mobility
Management Function (AMF) and the gNB. In [13], authors
explore the methodologies for handovers and service migra-
tions employing probabilistic and prediction algorithms, using
real-world datasets, and evaluating the implemented models.
Similarly, in [14] the authors employ statistical and machine
learning models to forecast the edge evolution, in order to
get the migration decisions. Although these approaches are
valid, classical machine learning and deep learning algorithms
don’t cope with the dynamic nature of edge environments.
Moreover, in order for these models to be effective huge
datasets are needed. In such dynamic environments, the use
of reinforcement learning (RL) may be necessary in order
to effectively adapt to changing conditions and make real-
time migration decisions. Additionally, RL-based approaches
have the added benefit of being able to consider the long-
term consequences of migration decisions, rather than simply
predicting the next best action. In [15] the authors propose
a DRL approach for service migration in (MEC)-enabled
vehicular networks in a simulation environment, observing
communication delay and migration costs and evaluating the
learning ability of the agent. The work reduces the end-to-end
latency and migration costs. However, the solution is tested
only in a simulation and there is no system architecture or an
explanation of the integration of their approach in real-world
infrastructures. On the contrary, in work [16], authors employ
DRL for determining the bandwidth for service migrations
in 5G Networks. They employ the DDPG algorithm in a
continuous action space defined as the bandwidth for the
corresponding migrations. They evaluate their algorithm in
real-edge infrastructure utilizing CRIU technology to migrate
the services. Although their solution targets 5G Networks,
there is no integration of their approach into a 5G network
with the respective interfaces.

In this work, we progress beyond existing literature by using
a cloud-native RAN and Core Network, deployed by using
a blend of micro-services and VMs, based on the OpenAir-
Interface (OAI) [17] platform. The selection of the different
types of virtualization depends on the services (network/edge
services) as detailed further below, consisting of either Virtual
Network Functions (VNFs) or Containerized Network Func-
tions (CNFs). We blend the approaches of the CRIU-based
microservices and VM-based service provisioning, towards
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Fig. 1: The deployment of the live-migration capable 5G Edge Infrastructure on Kubernetes

reaping the benefits of both worlds in the k8s environment. By
taking advantage of the multi-cell RTT feature standardized
by the 3rd Generation Partnership Project (3GPP) and the
workload cluster measurements, we model our infrastructure
as an MDP problem. We define the states and the actions and
we design a reward function that targets optimal decisions and
incorporates migration cost-aware penalties. On top, we imple-
mented a service migration Deep Q-Network (DQN) and Deep
State-Action-Reward-State-Action (Deep SARSA) agents. To
train the agents, we developed a digital-twin simulation envi-
ronment identical to our real-world setup. Finally, we evaluate
the agent’s performance in the real edge infrastructure. In
the next section, we detail our system architecture and key
building blocks.

III. SYSTEM ARCHITECTURE

Our overall setup consists of a 5G Edge architecture,
that is entirely based on the Kubernetes (k8s) framework,
enhanced with novel capabilities for service continuity of
MEC applications and maintenance of 5G Virtual Network
Functions (VNFs). Fig. 1 summarizes the end-to-end service-
based 5G network that uses hybrid solutions offered by the
coexistence of VMs and containers. By default, there is
no built-in mechanism in k8s to support the migration of
stateful pods between its cluster nodes. Our architecture covers
this gap using various technologies that benefit beyond 5G
networks as they can contribute to the seamless experience of
users regardless of their mobility. Furthermore, we enhance
our architecture with a digital twin-driven DRL framework
that predicts the edge conditions and takes optimal migration
decisions. Below, we analyze the components of our architec-
ture and the diverse technologies, that make up our setup. To
evaluate our implementation, we utilized the NITOS testbed
[18], a remotely accessible facility located at the University
of Thessaly, Greece.

A. Architecture of the Edge Infrastructure

Our cluster consists of three k8s workers and one control-
plane node. The control-plane node is responsible for monitor-
ing the health of the other nodes as well as the proper operation

of the VNFs and services. The remaining nodes host – by
default – pods, but also VMs due to the KubeVirt framework
that we deployed in our cluster. A pod is the minimal object
deployment for a microservice within the k8s environment; it
consists of at least one/more containerized services, that are
intercommunicating with each other. KubeVirt [19] is an add-
on that extends k8s capabilities by delivering VMs as container
workloads. The significant addition of KubeVirt to the k8s
ecosystem brings an ideal environment for edge solutions as
it covers the gap of live migration of services in the k8s by
taking advantage of VM live migration. Moreover, it enables
us to manage the lifecycle of VMs in the same manner as for
the pods via control plane commands.

However, containers can be live migrated too, mainly
through the CRIU tool [20] which can restore the checkpointed
states of the container to the destination node with the help of
the runC container runtime. An important effort to integrate
CRIU into k8s was accomplished through the PodMigration-
Operator [21], [22], which can migrate a stateful pod across
the k8s nodes. Nevertheless, it fails to seamlessly maintain
IP/TCP connections since the pod’s IP changes on the target
host, even if a k8s service assigned with a static IP, routes the
traffic to the pods.

We managed to maintain IP/TCP connections without inter-
ruptions, by attaching to the pods a secondary interface with
the help of the Multus Container Network Interface (CNI). We
created static, migration-dedicated MacVLAN interfaces that
bind to a host-bridged interface consisting of physical and
VLAN interfaces. The pods attach this MacVLAN interface
through the ContainerNetworkDefinition with static IPs which
are persistent during the live migration. The VMs attach their
own static IPs on the same bridged interfaces, providing Layer
2 connectivity between them. With this approach, we were
able to incorporate the altered PodMigration-Operator into our
architecture.

We apply diskless live migration to both of our virtualized
technologies. This allows us to transfer only the memory state
of the containers/VMs, which results in avoiding disk being
copied, thus lower migration times. This is achievable as all
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nodes share a Network File System (NFS), where the NFS
server is the control-plane node and the clients are the worker
nodes. This NFS system includes the dump files containing
the state pods and the images of the VMs respectively. To this
end, the process of live migration in pods can be achieved
with the following steps:

1) CRIU snapshots the state of the container on the target
pod.

2) The snapshot dump file is exported to the NFS server.
3) A new-cloned pod is created on the target node that

restores the source’s pod state via the dump file.
4) The target pod is running and the source pod can be

removed.

On the other hand, the KubeVirt VMs are importing their
disk images through PersistentVolumeClaim (PVC) which
is managed by Data Volumes from the Containerized-Data-
Importer (CDI) which is a persistent storage management add-
on for k8s. In order to perform diskless migrations, these
PVCs are distributed to the NFS via the NFS subdir-external
provisioner, i.e., an automatic provisioner that supports dy-
namic provisioning to pods/VMs using the already-existing
NFS server. Subsequently, the disk image is always available
to the target nodes and only the memory is copied from source
to destination.

It is worth mentioning that in both types of migration, the
Pre-Copy technique is employed since it has less downtime
[23]. By comparing VMs and pods during the live migration,
we conclude that pod seems like an ideal solution to deploy the
edge services, as it has the least migration time. However, we
choose to keep both technologies in our architecture because:

• VM live migrations are more stable and smoother (lower
latency spikes) than the pod ones.

• CRIU doesn’t support SCTP socket maintenance during
live migrations, unlike KubeVirt VMs. This leads to the
failure of live migration of 5G CNFs, as almost all of
CNFs communicate over the SCTP protocol.

Our final architecture tools and technologies are gathered in
table I.

TABLE I: Experimental Setup of the Edge Infrastructure

System Description
Nodes 1- Control Plane Node & 3-Worker Nodes
CPU Intel-Core i7-3770 @ 3.40 GHz
RAM 32GB
K8s Version 1.19.0
Container Runtime Containerd
KubeVirt Version 0.45.0
CDI Version 1.43.0
CRIU Version 3.14.0
RUNC Version 1.0.2-dev
K8s NFS Provisioner NFS Subdir External Provisioner
5G-Core NFs OAI Multi-Slice Core Network
5G-RAN OAI RF-Simulator & UERANSIM
5G-UE OAI NR-UE
5G-SLICE URLLC

B. Management & Deployment of Network Functions

For the telecom network, we rely on a multi-slice 5G Core
Network provided by the OpenAirInterface (OAI) platform
[17], which consists of the following containerized CNFs:
1) Network Repository Function (NRF), 2) Unified Data
Repository (UDR), 3) Unified Data Management (UDM), 4)
Authentication Server Function (AUSF) 5) Network Slice Se-
lection Function (NSSF), 6) Access and Mobility Management
Function (AMF), 7) Session Management Function (SMF), 8)
User Plane Function (UPF). In this deployment, there are two
Network Slice Selection Assistance Information (S-NSSAIs)
configured, therefore two slices: 1) Ultra Reliable Low La-
tency Communications (URLLC) 2) Massive IoT (MIoT).
However, we mainly focus on the URLLC slice. The NSSF,
UDR, UDM, AUSF, and AMF are common to all slices, while
UPF, SMF, and NRF are unique for each slice.

Likewise, for the Radio Access Network (RAN), we employ
two different RAN simulators: ueransim and rfsimulator cor-
responding to our two different slices. Specifically, we utilized
the disaggregated architecture from the rfsimulator including
the CU and DU components, as the result of the gNodeB
disaggregation into CU/DU. For the User Equipment (UE),
we employed the OAI 5G-NR UE.

Since SCTP socket maintenance is not supported during
the live migration of the pods, we decided to nest some of
the containerized NFs inside the KubeVirt VMs, in order to
be able to migrate them across the edge nodes. Some of
them are UPF, SMF, AMF, and GNB-CU. Their selection was
made because most of them are stateful functions and are of
significant interest for live migration due to their importance
in the control plane proper operation/maintenance and in the
Quality of Service (QoS) that the UPF provides [24]. In
opposition, edge services are better to run in pods, so that
they can be quickly migrated, as a decrease in QoS in the
user plane has a direct impact on end users, while the change
in performance of the control plane doesn’t directly affect the
end user’s experience.

C. Architecture of the DRL Migration Environment

As known, in case of a pod failure, the k8s control-plane
node launches a new container in another node to replace the
failed one. However, this can cause quite a few problems
in an Edge 5G Network. Initially, QoS ceases to exist as
there is no service availability. Even worse, crucial CNFs
that are essential to the operation of a core network can stop
working. In addition, when a network is characterized by its
slice, as in the case of URLLC, the new pod that is deployed
should be migrated not only to the healthiest node but also to
the node that gives the lowest latency with the end-user. To
determine the best candidate node we need to observe either
the position of the UE or the latency measurements of the
neighbor cells/servers along with the load of each node.

In 5G NR, LMF uses various techniques to measure the
location of UE, including using Global Navigation Satellite
System (GNSS) signals or using signals from the network
itself. However, such techniques face accuracy errors and
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require good network time synchronization. The 16th release
of 3GPP includes support for multi-cell Round Trip Time
(RTT) measurements as a new feature in the LMF. Specifically,
the UE sends Sound Reference Signal (SRS) requests and
receives Position Reference Signal (PRS) responses from mul-
tiple Base Stations. We decide to observe the multi-cell RTT
measurements for our migration decisions since this method
is robust against network time synchronization errors [25].
Additionally, RTT is a more suitable metric for our solution, as
it indicates the responsiveness of each cell which sometimes
is independent of the UE position (e.g huge cell capacity).
Therefore, we end up relying on two metrics for migration
decisions. The average RTT between the UE and the edge
servers/cells, and the load of each edge server. We define the
average RTT , Ri between the edge nodes and the UEs that
the LMF monitors by Eq. 1; where xi are the average RTT
values of the last N transmissions per UE-node pair. We also
define the total load Li of each edge node in the cluster as the
uniform degree along multiple dimensions as described by Eq.
2. The variables cpui and memi are the average utilization
of cpu and memory respectively for the corresponding edge
server.

Ri = (
1

N
)

N∑
i=i

xi (1)

Li =
1

1− cpui
· 1

1−memi
(2)

Service migration is a challenging problem due to the
dynamic nature of the environment and the complex inter-
actions between the UE, the servers, and the network. Tradi-
tional approaches to service migration, such as rule-based or
heuristic-based methods, may not be able to adapt to changing
conditions or handle complex dynamics effectively. Model-
free and policy-based Reinforcement Learning (RL) is well-
suited for dynamic environments where the conditions may
change over time, such as in a service migration environment
where the UE is moving and the loads on the servers may
vary. By using RL, the agent can learn an optimal policy
for minimizing the RTT between UE and the servers, and
for balancing the loads on the servers. This can help to
improve the overall performance of the system and provide
a better experience for the UE. Traditional RL algorithms
such as Q-Learning, use a Q-table to store each state and
the corresponding values of all actions (Q-value). However,
this cannot scale if the state space expands, since the Q-table
will also become larger, resulting in inefficient learning. Deep
Reinforcement Learning is particularly effective at adapting to
these changing conditions, as it can learn from a large amount
of data and can generalize to unseen situations. Moreover,
DRL employs a Q-function rather than a Q-table and utilizes
deep neural networks (Deep Q-Networks/DQN) that estimate
the Q-function, resulting in effective and scalable learning. By
taking the aforementioned into account, and by exploiting the
edge migration capabilities of our architecture, we designed
and implemented a DRL Service Migration framework. The
architecture of our solution is illustrated in Fig. 2.

We created two identical custom environments, by utilizing
the OpenAI Gym platform [26]. The first one is a simulation
environment for training purposes, playing the role of a digital
twin in the real environment. The second one is for evaluating
our solution in a real-world environment. The only difference
between them is that the real-world environment employs
the real cluster and leverages the migration APIs that we
developed in the section III-A. This allows us to safely and ef-
ficiently explore a wide range of possible scenarios and actions
without damaging real-world systems. Both environments are
modeled as a Markov decision process, with the same states
s, actions a, and rewards r. The states can be observed by the
Eq. 3.

s = (Ni, R1, ...RN , L1, ...LN ) (3)

In this equation, the states are represented as a tuple of
the variables; Ni is the Node where the set of user’s edge
services (pods/VMs) are running and N is the total number of
nodes. In our cluster, we have three edge nodes, thus the states
can be redefined as s = (Ni, R1, R2, R3, L1, L2, L3). The
action space a includes the actions: Wait and Migrate to Ni

server. The Migrate action migrates the set of edge services
to a specific Ni edge server, thus including as many migration
possible actions as the number of edge nodes. The Wait action
simply means that the agent doesn’t migrate the services to any
of the candidate nodes at the current time-step. The rewards
r represent the feedback the RL agent receives after taking
action in a given state. We define two local rewards: rR and
rL.

rR =
Rmin

Ri
− Ri

Rmax
+

min(Rlist)

Ri
− Ri

max(Rlist)
(4)

rL =
Lmin

Li
− Li

Lmax
+

min(Llist)

Li
− Li

max(Llist)
(5)

Both rewards determine the feedback for each action taken
by the agent from the point of view of RTT and load of
the edge servers respectively. Each reward is calculated to a
similar respective mathematical formula given by Eq. 4 and
5. In these equations, the values Ri and Li are the current
RTT and load values of the server that the agent migrated
or stayed to. The ranges (Rmin,Rmax) and (Lmin,Lmax) are
RTT and load Service Level Agreement (SLA) thresholds.
Furthermore, the lists Rlist and Llist contain the RTT and
load values for all the candidate nodes. Both rewards are
designed to reward/penalize the agent when the migrated
server’s RTT or load values are inside/outside SLA thresholds
and when the agent selects the most optimal/mediocre server
between the candidate nodes. Specifically, the first subtraction
of the fractions expresses the ranking of the node in the SLA
thresholds, while the second one expresses the ranking of the
node among the candidate nodes. In addition, both rewards
are migration-cost-aware since they penalize the agent if it
migrates the services to less optimal nodes. For example, in
the case of RTT if the measurements are the following for each
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Fig. 2: Deep Reinforcement Learning Architecture for the Live Migration Environment.

node: (3, 5, 6)ms the corresponding reward functions will be:
(0.6,−0.2,−0.6) with thresholds defined as Rmin = 1 and
Rmax = 20. Although every RTT value is far below the Rmax,
the reward functions are negative for the less optimal nodes,
preventing the agent from migrating services to them. This
results in resource and bandwidth saving, as the agent will try
to migrate or stay to the most optimal node, instead to follow
an always-migrate policy. However, to better assist the agent
to avoid relocating services to the most unhealthy node, we
introduce a migration penalty. This penalty is given by Eq. 6
and 7.

pR =

{
+ cost

2 , if Ri>Rmax and Ri=max(Rlist)

0 , otherwise
(6)

pL =

{
+ cost

2 , if Li>Lmax and Li=max(Llist)

0 , otherwise
(7)

Both pR and pL, penalize the agent for exceeding the
maximum allowed RTT/load, and for selecting the node with
the worst rank among candidate nodes. Each penalty amounts
to half of the migration cost. This cost is a hyperparameter and
in our case, it symbolizes the maximum bandwidth that can be
wasted for one service relocation and it’s a constant. Finally,
the global reward is the sum of the two individual rewards
subtracted by the sum of the two individual penalties, as can
be observed by Eq. 8. It is worth mentioning that each time the
RTT or load thresholds are exceeded we terminate the episode.
This approach has been taken, to guide the agent to not violate
the SLA and to address the credit-assignment problem. The
credit-assignment problem occurs when the agent receives the
reward at the end of each episode without identifying the
responsible actions.

r = rR + rL − (pR + pL) (8)

To evaluate the performance of the proposed DRL solu-
tion, we employ real-world scenarios. Since multi-cell RTT
measurements-datasets are not yet publicly available, we im-
plemented a realistic mobility scenario. This scenario emulates
a part of a real-world 5G commercial topology, located on
State Route 111 highway, California U.S. The map topology
illustrated in Fig. 3 is obtained by the Ookla 5G Map [27].
Precisely, this scenario emulates cars traveling on the given
highway in both directions, with speeds varying from 80 to
104.5 km/h with the limit of the highway being 105 km/h.
On this route, there are three 5G antennas, with approximately
equal distance between them. We assume that the edge servers

are located next to the antennas and that we monitor the Muli-
Cell RTT measurements through the LMF. The RTT values
are linearly proportional to the Euclidean distances between
UEs and edge servers/base-stations. Also, the RTT values are
affected by the radio interference as random loss, which we
generate by adding Additive White Gaussian Noise (AWGN)
with a fixed standard deviation per route. The rate at which
the RTT changes depends mainly on car speeds and different
driving profiles. To generate a large variance that could lead to
efficient learning and generalization of the agent, we distribute
the variety of speeds uniformly. Subsequently, the RTT values
of UE/cell pair change as δRTTi = di

vi
+λ, where the di is the

distance between the UE and the corresponding edge server,
vi is the velocity defined by vi = uniform(80, 104.5) and the
random-loss λ = awgn(0.5, 0, 1).

To emulate realistic edge workloads, we relied on Google
cluster workload traces [28]. This open dataset includes re-
source requests and usage measurements from Google’s Borg
cloud clusters, for an entire month. Specifically, we utilize the
average cpu and memory usage from three different machine
IDs in the cluster, given by the corresponding equations:
cpu =

Σ(Ucpu)
Twindow

and mem =
Σ(Umem)·Tsample

Twindow
. The variables Ucpu and

Umem are the cpu and memory usage respectively, while the
Twindow is the measurement window and Tsample is the length
of the sample. We obtain the cpu and memory every time-step
and we calculate the total load per edge server given by Eq. 2.
In order to avoid overfitting and to have a large variance to the
repetitive load scenario we apply additional Gaussian noise to
memory and CPU respectively. The noise is applied each time
the scenario is repeated and follows a normal distribution with
a mean of 0 and a standard deviation of 1 for both cpu and
mem metrics of each node.

This way we can observe all the states that we defined
on Eq. 3 by emulating mobility and load scenarios that take
place in a well-defined real-world topology with realistic load
patterns among the edge servers.

Fig. 3: Part of a real-world 5G commercial topology located
near State Route 111 highway, California U.S.
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To learn an optimal policy for this environment using DRL,
we utilize a deep Q-network approach, where the DQN agent
is trained to predict the expected reward for each action in a
given state via the Q-Network. The Q-Network is a neural
network and in our case, the Q-Network is a Long short-
term memory (LSTM). The reason behind choosing LSTM
is that it can handle variable-size inputs and outputs, thus
resulting in easier retraining of the agent. It is responsible
for approximating the action-value function Q(s, a) and is
updated at each time-step based on the current state and
chosen action. In order to stabilize the learning process, we
implemented also a target neural network in our system. The
target network is identical to the Q-Network and is used to
generate the target values for the Q-Network updates [29].
The target network is not involved in the training and it is
only updated by the Q-Network periodically. This results in
the reduction of the variance in the learning process and can
improve the stability of the system. In addition to the Q-
Network and target network, we employ a replay buffer to
store past experiences and sample them during the training
process. This helps to decorrelate the experiences and can also
improve the stability and sample efficiency of the learning
process. In more detail, the Q(s, a) is updated based on
experiences in the environment, which are stored in the replay
buffer and sampled for learning. At each step, the Q-Network
takes the current state as input and produces a vector of
estimates of the action-values for each possible action. The Q-
Network is then updated using gradient descent to minimize
the mean squared error between the predicted and target
values. The target network is periodically updated to match
the weights of the Q-Network and produces the target values.
Then, computes the estimated return of taking the selected
action in the current state and the optimal action in the next
state via yi:

yi = r + γmax
a′

Qtarget(s
′, a′; θ)

where r is the reward received after taking action a, s′ is the
next state, a′ is the next action, γ is the discount factor that
controls the importance of future rewards, and θ symbolizes
the updated weight parameters. Finally, the Q(s,a) is updated
based on the cost function L(θ) which is the squared difference
between target Q and predicted Q:

L(θ) = Es,a,r,s′
[
(yi −Q(s, a; θ))2

]
In addition to the DQN algorithm, we also implemented

another RL algorithm called SARSA (State-Action-Reward-
State-Action). In contrast with DQN, SARSA is an on-policy
algorithm as the Q(s, a) is updated based on the current
choices of the policy. The SARSA algorithm differs from DQN
in the way the target values are computed. Instead of using
the maximum expected future reward, SARSA uses the reward
and the expected action value of the next state to update the
current action value via y′i:

y′i = r + γQtarget(s
′, a′; θ)

In our implementation, the SARSA agent employs a similar
DRL architecture as the DQN with a Q-network (MLP neural

network). This kind of implementation is mentioned by the
literature as Deep Sarsa [30].

To address the ”exploration vs exploitation” problem, we
employ the LinearAnnealedPolicy for both algorithms. In this
policy, the exploration rate ϵ that controls the probability of
selecting a random action is decreased linearly. This reduction
rate is controlled by the exploration rate decay d which directs
the rate at which ϵ decreases over time. This allows the agent
to gradually shift from exploration to exploitation as it learns
the optimal actions for a given state. To implement the DQN
and SARSA architectures we relied on TensorFlow keras-rl2
python library.

All the aforementioned hyper-parameters and the corre-
sponding values we used for the optimal training are gathered
in the table II after extensive experimentation. The common
hyper-parameters of DQN and Deep Sarsa algorithms such as
Q-Network, γ, α, ϵ, and d are chosen to have the same values
for close comparison.

TABLE II: Deep Reinforcement Learning Parameters.

Parameter Value
Deep Q-Network LSTM
Deep Q-Network depth 2
Hidden layer depth 24
Optimizer Adam
Activation ReLU
Target Model Update 20
Replay buffer size 20000
Discount factor γ 0.99
Policy LinearAnnealedPolicy
Learning rate α 0.001
Exploration rate ϵ 1.0
Exploration rate decay d 0.1
Number of steps 200000

IV. EVALUATION

For the evaluation part of the Edge-Cloud Infrastructure,
we initially compared the migration times on KubeVirt VMs
and pods in various types of applications: 1) Text Application
server, 2) SIPp [31] server, and 3) VLC streaming server.
The SIPp application uses Session Initiation Protocol (SIP) to
transfer VoIP packets. As illustrated in Fig. 4a, the migration
times are considerably lower in the pods compared to the
KubeVirt VMs. However, the migration times of the VMs are
generally not prohibitive. Next, we focused on the migration
times of VMs that are hosting various NFs including SMF,
UPF, AMF, and CU. The operation of the network functions
is uninterrupted and the AMF-VM has the longest migration
time and this can be observed by Fig. 4b. Next, we captured
the latency and the throughput that the end-user experiences
during the interactions with the SIPp server while the server
was migrating to other edge nodes, as a pod, and as a VM. The
results are displayed in Figs. 4c and 4d, where in both plots,
the vertical-dotted line denotes the time that the migration
was initiated. Fig.4c shows that the VM migration had a
smoother impact on the experience of UE in contrast to pod
migration which completed much faster (at 47th second),
but had a significantly higher spike in the observed latency.
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Fig. 4: Live Migration measurements.

Fig.4d shows that the end-user had a seamless experience in
terms of throughput in both virtualization technologies. There
was only a small imperceptible drop during the migration,
which was followed by a small rise. It is worth noting that
the service relocated to a node that is closer to the UPF/g-
NodeB. Therefore, a small drop in jitter and a small increase
in throughput are subsequently observed.

Toward evaluating the DQN and Deep Sarsa agents, we
trained both agents for 200.000 steps. Fig. 5a illustrates the
average reward over the training episodes for the two agents.
Both agents were able to learn and improve their performance
over the course of the episodes. Moreover, they explored the
action space effectively in the beginning and then switched
to exploiting the learned policy as the episodes progressed.
Specifically, before the 600th episode both agents were fully
exploring the environment. After the vertical line, the agents
progressively started exploiting and this is demonstrated by
the increase in average reward over the episodes which by
the end converged. However, the DQN agent had a better
performance, as it reached higher rewards. This denotes that
the DQN agent is trained efficiently, as there’s a good balance
between exploration and exploitation. Additionally, the DQN
agent maintained the QoS at higher levels during the phase
of exploiting. This is indicated by Fig. 5b, which displays the
increase in the average episode duration. The QoS is increased
since we terminate the episodes, each time the RTT or load
thresholds are exceeded. This means that the DQN agent took
better actions that met the conditions of the SLA. Although
sometimes failed to not violate the SLA, due to the fact that the
cluster might be overloaded. For the aforementioned reasons,
the DQN agent qualifies for the taking of service migration
decisions.

We evaluated the DQN agent’s performance, in the real-
world k8s cluster with the developed migration APIs. Specifi-
cally, by taking advantage of TensorFlow’s save/load methods
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Fig. 5: Agents training evaluation: DQN vs Deep Sarsa.

Fig. 6: DQN agent’s actions during user’s movement in the
highway, in an overloaded edge cluster; vertical lines denote
when the migrations take place on pods.

we loaded the saved agent’s model weights and started testing
it in our second evaluation environment. We employ the
mobility scenario, by emulating a car that has the max speed
on the highway for one round-trip (two-way route). We also
apply an unseen heavy edge workload from one specific day
of the entire measurement month by leveraging Google’s
Borg cloud cluster dataset. The OAI-NR-UE interacts with
the SIPp server that is packaged as a pod, in order for the
agent to achieve the least migration times. The footprint of
this experiment is illustrated in Fig. 6. The RTT and load
thresholds are Rmax = 20 and Lmax = 12 respectively. At
the beginning of the experiment, the agent stays on the optimal
Node 1. Then at the time points 1 and 2, the agent follows
the UE by relocating the service near the end-user (Follow-Me
approach), before the RTT threshold is exceeded, and at the
same time, schedules it in healthy nodes. Before time point 3,
the service is running on Node 3 but as the RTT increases the
agent should relocate the service to a better candidate node.
However, in that case, every node is out of SLA thresholds,
so instead to migrate the service to the overloaded but with
satisfactory RTT Node 2, it remains on Node 3 violating the
SLA but saving resources. Finally, at time point 3, it relocates
the service to Node 1, which falls within the SLA thresholds.
This implies that the agent learned the policy successfully, as it
proactively relocated the service to the nodes with the optimal
RTT and load values and saved resources without performing
unnecessary migrations.
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V. CONCLUSION

In this work, we developed and experimentally evaluated
an SLA-aware 5G edge infrastructure that offers high QoS
to the end users regardless of their mobility. We developed
the necessary migration capabilities in a k8s environment
supporting VM and pod technologies. Our system provides
continuous low-latency access to the edge services and an
uninterrupted throughput experience. On top of this setup, we
implemented a digital-twin environment that is identical to
the real-world environment and we developed DQN and Deep
Sarsa, migration agents. After the training of our agents in the
simulation environment, we employed the DQN agent’s model
weights in our real-world infrastructure. Our results denote that
the DQN agent successfully learned the policy based on multi-
cell RTT measurements and the workload of edge servers.
Our framework can dynamically and proactively relocate MEC
apps in a k8s environment depending on the experience of the
users and the condition of the edge nodes. In the future, we
foresee extending our scheme to support proactive handover
decisions synergistically with service migrations.
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