
Containing Low Tail-Latencies in Packet Processing
Using Lightweight Virtualization

Florian Wiedner, Max Helm, Alexander Daichendt, Jonas Andre, Georg Carle
Department of Computer Engineering

Technical University of Munich
Garching by Munich, Germany

{wiedner, helm, daichend, andre, carle}@net.in.tum.de

Abstract—Packet processing in current network scenarios
faces complex challenges due to the increasing prevalence of
requirements such as low latency, high reliability, and resource
sharing. Virtualization is a potential solution to mitigate these
challenges by enabling resource sharing and on-demand provi-
sioning; however, ensuring high reliability and ultra-low latency
remains a key challenge. Since bare-metal systems are often
impractical because of high cost and space usage, and virtual
machines require substantial additional resources, we evaluate
the utilization of containers as a potential lightweight solution
for low-latency-enabled packet processing. Herein, we discuss
the benefits and drawbacks and encourage the use of container
environments in low-latency packet processing when the degree
of isolation of customer data is adequate and bare metal systems
are unaffordable. Our results demonstrate that containers achieve
similar latency performance with more predictable tail-latency
behavior compared to bare metal packet processing. Further-
more, we show that the overhead caused by virtualization is
negligible in tail latencies.

Index Terms—low-latency, testbed, container, virtualization,
packet processing

I. INTRODUCTION

Autonomous driving and remote medical procedures are
examples of applications that require low-latency network
communications and commonly operate on specialized hard-
ware machines to meet this requirement. However, this use of
specialized machines creates challenges in scalability, which
affects the cost per service rate when real-time requirements
are in play. The 5G ultra-reliable low-latency communications
(URLLC) profile provides a framework for such systems
that require ultra-low latency, defined as <1ms end-to-end
latency and 99.999th percentile of traffic must be within this
limit [1]. Using dedicated hardware to run applications for
such purposes is not an efficient solution economically for the
customer or provider.

Therefore, a solution that offers on-demand provisioning
and resource sharing for low-latency network services is
required. Virtualization of computer systems is one such
solution. However, the use of virtual machines (VMs) with a
complete operating system (OS) results in significant overhead
in terms of performance, memory, and disk space usage.
Gallenmüller et al. [2] compared packet processing between
bare metal and VMs on commodity hardware and reported
that tuning Linux to reduce interrupts and other influences
significantly reduce tail latency in packet processing. VMs

offer a high level of isolation that is unnecessary in many
cases, hence a lighter version is preferred for improving
resource-usage.

Containers offer a lightweight virtualization alternative for
resource sharing with other containers and host OS on the
same system. While containers do not virtualize the complete
OS, there are several lightweight software isolation mecha-
nisms available [3].

Given the significance of low-latency in critical systems,
evaluating the tail-latency behavior of packet processing dur-
ing the long-term execution of applications in containers is
essential. Herein, we provide

1) a tool for external control of Linux containers (LXC) in
experiment automation,

2) an investigation of the influence of optimization tech-
niques on tail-latency,

3) a model for tail-latency behavior in packet processing
within containers, and

4) comparison of using network packet processing applica-
tions on bare metal, in containers, and in VMs for low-
latency optimized, commodity off-the-shelf systems for
the use with URLLC.

The paper is structured as follows: Section II offers back-
ground information and presents the current development and
research progress in virtualization and latency optimizations.
In Section III, the challenges involved in low-latency packet
processing using containers are discussed. Section IV outlines
optimization techniques for containers. Section V describes
the measurement setup and Section VI evaluates the proposed
approach’s results. We provide models of the tail latencies in
Section VII. Section VIII offers recommendations on the usage
of the specific virtualization technique in low-latency packet
processing. Sections IX to XI conclude the paper by present-
ing limitations, reproducibility information, a conclusion, and
future scope for research and development.

II. BACKGROUND AND RELATED WORK

This section presents an analysis of relevant literature in the
fields of containers, VMs, remote device management, low-
latency applications and optimization, and tail-latency models.

20
23

 3
5t

h
In

te
rn

at
io

na
l T

el
et

ra
ff

ic
 C

on
gr

es
s (

IT
C

-3
5)

 |
97

9-
8-

35
03

-6
00

7-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IT
C

-3
56

00
63

.2
02

3.
10

55
57

59

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

Hardware

Host OS

Container Engine

Container

Application

Libraries

Container

Application

Libraries

Virtual Machine

Application

Libraries

Guest OS

Figure 1. Comparison between container (left) and VMs (right) [5]

A. Containers and VMs

Using a single hardware machine for each customer or
application is neither cost-effective nor flexible. Therefore,
virtualization is a crucial technology that enables resource
sharing and flexible, on-demand provisioning of resources.
However, when executed in a virtual environment, applications
with strict low-latency and reliability requirements should
perform similar to those implemented on bare metal.

Two commonly used architectures for virtualization are
hypervisor- and container-based. Hypervisor-based virtualiza-
tions (VMs) isolate the complete OS, including the ker-
nel. Whereas, containers are called lightweight or OS-level
virtualizations with having the kernel shared between host
OS and containers [4]. Containers isolate mainly processes,
files, and resource access [4]. In Figure 1, the base shows
the hardware running the host OS and the top shows the
types of virtualization that are available; the left side depicts
containerization, which includes the container engine used to
manage the containers; and the right side depicts a VM, which
shows the additional overhead of the guest OS residing within
each system.

Yadav et al. [5] describe that VMs offer a strict separation
using virtualized hardware, and a completely separate OS
providing a high level of isolation and reducing the influence
of customers on each other on the same physical machine.
However, this isolation level results in a significant overhead
in resource usage, making VMs ideal for experimental and
high-security applications, with a trade-off between security
and resources important for URLLC applications [6].

Yadav et al. [5] describe containerization as less resource
intensive and highly flexible compared to VMs. With a shared
kernel, container offer quick startup and direct device access
as Gedia and Perigo [7] have demonstrated. This minimized
overhead makes containers an ideal choice for performance
critical scenarios where multiple applications must interact
with each other [8]. Linux offers several container frameworks,
such as Kubernetes, a cluster manager, which automates
deployment and enhances portability for applications, or LXC.

LXC integrates all libraries of a complete OS, but uses a more
complex setup compared to solutions like Docker, and has less
overhead [8].

Throughput analysis of containers and VMs is a common
area of research, evident from the considerable attention given
to understand throughput boundaries. Barham et al. [9] studied
the impact of CPU resources on XEN-based VMs focusing on
variations induced by time slices on the CPU. Furthermore,
Abeni et al. [10] analyzed the effect of tuning Linux on
the maximum packet rate of kernel virtual machine (KVMs)
and achieved promising results by binding CPU affinity of
interrupts to selected cores and the VMs to remaining cores.
Similarly, Tran and Kim [11] found that CPU core assignment
for containers is crucial for improving throughput. Mora-
bito et al. [12] conclude that containers challenge traditional
systems in terms of resource usage and performance. Further-
more, Cha and Kim [13] employed containers to offer low-
latency edge services and demonstrated that container setups
achieve near-optimal throughput by utilizing hardware sup-
port.To conclude, research on packet processing in virtualized
systems primarily focuses on throughput analysis or overlay
networks such as [14], [15].

Several studies have analyzed latency on VMs as demon-
strated in [2], [16], [17], and [18]. However, analyzing latency
for packet processing applications based on containers is
typically not addressed in present studies, despite the necessity
to examine influences on packet processing through containers.

B. Remote Management of Devices

Remote hardware control is a common practice in com-
mercial systems to perform tasks, such as power cycling,
or provisioning, remotely. A common protocol to control
hardware interfaces is the Intelligent Platform Management
Interface (IPMI) [19] using the Baseboard Management Con-
troller (BMC) to control hardware features. Despite the lack
of recent specification updates, IPMI is still a widely used
protocol as changing the hardware is impractical.

Virtualization solutions are typically controlled using pro-
prietary solutions offering extensive, and exclusive features.
Combining hardware machines, VMs, and containers in one
ecosystem requires a common interface for all three. VMs
and hardware can be controlled using IPMI with utilizing
VirtualBMC for VMs [20]. However, for container solutions,
such a system does not exists currently. Therefore, an interface
supporting IPMI for containers is essential improving the
maintainability of, for example, data centers additionally.

C. Low-latency Applications

Packet-processing applications with end-to-end latency re-
quirements of <1ms in general traffic networks are becoming
increasingly important. Therefore, packet processing applica-
tions must improve latency and reliability.

Gallenmüller et al. [21] analyzed latency implications on
intrusion detection systems and found that using a specific
OS, reducing interrupts, and using a specific network interface
card (NIC) help to reduce latency spikes. As Bozilov et

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

al. [22] reported, is adding important security introducing
additional latency. Therefore, it is crucial to reduce network-
induced latency to allow security mechanisms within networks.
Jain et al. [23] have shown that improving the data plane on
specialized systems can significantly reduce latency.

Other examples of low-latency applications include data
center internal communication [24], communication phases
in distributed machine learning applications [25], and cloud
systems providing centralized services to multiple users as
outlined by Gandhi et al. [26].

D. Low-latency OS Optimizations

Tuning and optimizing OS is essential to enable predictable,
reliable, and low-latency applications on any system type,
whether container, VM, or bare metal. Previous studies report
that tunings in specific areas are possible, such as reducing
the impact of IO processing on container, and reducing the
influences of the system itself. For instance, Gallenmüller
et al. [21] have demonstrated that interrupts on the packet-
processing core have a significant impact on latency. Addi-
tionally, disabling timer ticks, isolating cores, and reducing
energy-saving mechanisms on VMs can minimize the impact
on packet processing through virtualization [6]. Using poll
mode instead of interrupt-based drivers improves latency and
reduces the number of context switches. Handley et al. [27]
found that using the data plane development kit (DPDK) [28],
a framework for poll-mode networking, significantly reduces
processing latency as the application can be isolated from the
OS kernel.

Similar to VMs, container performance can be improved
by reducing interrupts, and adding predictability [29]. Herein,
we evaluate and demonstrate the optimization potential for
containers in comparison to packet processing on VMs or bare
metal including the exploration of further optimizations for
low-latency-networking.

E. Tail-latency Models

Extreme Value Theory (EVT) is a statistical technique used
to model the behavior of distribution tails [30]. It relies
on historical data to predict the probability and magnitude
of rare events, such as natural disasters. In the networking
domain, EVT can be utilized to model tail-latencies since they
constitute similarly rare events. Previous studies have success-
fully applied EVT to analyze time sequences in both wired
and wireless networks [31]–[34]. Our study adopts a similar
approach to predict and validate the likelihood of latency
spikes. The validation shows an accurate predictive power of
such models when extrapolating tail-latency magnitudes and
frequencies to longer measurement periods. Additionally, we
evaluate the convergence of these predictions and compare
different container optimization techniques.

III. CONTAINER AND LOW-LATENCY: CHALLENGES

Using containers for low-latency and highly reliable systems
can be challenging but feasible. The processing time on the
container node is prolonged due to interrupts needed for

Table I
LATENCY OPTIMIZED BOOT PARAMETERS FOR HOST OS RUNNING

CONTAINERIZED SYSTEMS

Parameter Value Description

rcu nocbs [cores] No RCU callbacks
rcu nocbs poll No RCU callback threads wakeup
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
tsc reliable Rely on TSC without check
mce ignore ce Ignore corrected errors
audit 0 Disable audit messages
nmi watchdog 0 Disable NMI watchdog
skew tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
nosmt Disables hyperthreading

the container engine. To mitigate this issue, one method is
the use of poll-mode-drivers that minimize context switches
and interrupts. DPDK [28] provides user-space, poll-mode
networking to accelerate packet processing, with a broad range
of available applications such as MoonGen [35], a high-
speed packet generator. Using user-space networking within
containers requires additional tasks performed outside of the
container as not all operations are allowed within [11].

Moreover, containers cannot be entirely isolated from the
host OS as a shared kernel is used, and interrupts are needed
on the specific cores, resulting in the challenge of optimizing
them for low-latency operations with reducing the influence of
operations performed outside of the containers. The challenges
presented herein illustrate the trade-off between resource shar-
ing and URLLC.

IV. OPTIMIZATION ANALYSIS

In computer systems, processes can be affected by in-
terrupts, the sleep state of CPUs, or concurrent processes.
While throughput in packet processing is unaffected by these
influences, latency, specifically tail-latency, is significantly
impacted. Having examined optimizations in both bare-metal
and VM environments, we evaluate the suitability of these
optimizations for container environments.

Several studies have examined network latency optimization
techniques in VMs and bare-metal systems [6], [36], [37]. The
scheduling of applications in containers is managed by the
host OS, which means achieving full isolation from interrupts
is not possible. Consequently, optimizations such as a tick-
less-kernel, and isolation of selected CPUs is not feasible as
a shared kernel is used requiring access to the specific cores.
Due to this difficulties in isolating containers, it is essential
to explore new approaches and conduct assessments of the
suitability of these optimizations in containers.

To minimize the impact of the host OS on the container
and between containers, LXC provides a method for reserving
cores and memory exclusively. Additionally, automatic load
balancing in LXC can be disabled to reduce overhead and
make sure no additional scheduling is needed [3]. To summa-
rize, these specialized container isolation techniques help to
minimize the external influence on a container.

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

Fine-tuning the poll mode for idle CPUs, disabling energy-
saving mechanisms, and turning off audit messages, can im-
prove container performance similar as with VMs. Interrupts
affinity can be set to a specific core, and logging of backtraces
can be reduced to improve latency. Disabling hyper-threading
improves latency for all systems. Table I presents the suggested
list of boot parameters. The list is based on the presented
container adoptions of optimizations for VMs in the study
of Gallenmüller et al. [21]. Using the program taskset, it is
possible to pin the affinity of all ready-copy-update processes
to a core to reduce their scheduling on container cores.
However, when resources are limited, the CPUs should be
shared between containers leading to increased tail latencies.

V. MEASUREMENT SETUP

To automate management and synchronization of testbed
resources while performing experiments on bare-metal, VMs,
and containers, we use the Plain Orchestrating Service by
Gallenmüller et al. [38]. This enables the execution of syn-
chronized experiments on hardware and VMs. Using IPMI
for controlling the state of the machines enables flexibility
and simplifies the execution of the same experiments using
packet-processing on bare-metal and VMs. Utilizing identical
scripts improves comparability among containers, VMs, and
bare-metal environments.

The used software VirtualBMC [20] to control VMs using
IPMI uses libvirt-attached VMs and enables the control of the
boot process, setting of live-boot images, and boot parameters,
which permits the reuse of scripts originally designed for
bare-metal on VMs. However, VirtualBMC do not provide an
interface for containers. Other software to control containers
such as Docker Engine or Kubernetes cannot be used as they
can only control containers but not hardware machines and
VMs. To incorporate LXC into our ecosystem, we developed
a modified version of VirtualBMC called VirtualLXCBMC
including support for LXC functionality such as booting, shut-
down, or restart. Since containers use a different image format,
live images must be configured using LXC directly. However,
the steps taken after startup are similar to those in VMs.
To facilitate replication of our results, the VirtualLXCBMC is
made available as open-source software alongside this paper.

For precise measurements, load generation and timestamp-
ing are performed externally, as depicted in Figure 2. The load-
generator (LoadGen) features an Intel Xeon Silver 4116 CPU,
192 GB RAM, and a dual-port Intel 82599ES 10-Gigabit SFP+
NIC connected to the Device-under-Test (DuT) using optical
fibers. The DuT is equipped with an AMD EPYC 7551P 32-
Core Processor, 128 GB RAM, and 2 × Intel X710 10GbE
SFP+ NICs, where one port each is linked to the LoadGen. On
the DuT, we execute our experiments using bare-metal, VM,
or container. The interfaces are directly accessed from within
the used solution. To ensure high-precision measurements per
packet at line-rate we used a timestamping machine (times-
tamper) linked to the fibers between DuT and LoadGen with
passive optical terminal access points (TAPs). These TAPs
introduce a constant delay to the timestamps on both ends

LoadGen

DuT

DuT

Container
▶

◀

▶

◀

Timestamper

◀ ◀

Figure 2. Measurement-setup structure

and can be neglected. The timestamper was equipped with an
AMD EPYC 7542 32-Core Processor, 500GB of memory, and
an Intel E810-XXVDA4 25Gbit/s NIC flashed to 10Gbit/s
offering a precision of 1.25 ns [39]. This is used to take
timestamps in the hardware using the precision of the Intel
E810 NIC. Timestamps taken in software are prone to the same
interrupts and kernel operations as our DuT therefore using
hardware timestamping reduces significantly the influence of
the timestamping method.

This configuration facilitates precise analysis of packet
processing tail-latency. We used PostgreSQL for evaluation to
enable easy extension, and evaluating of the analysis. Further,
we employed MoonSniff scripts [35] of MoonGen on LoadGen
and timestamper to transmit and record minimally sized pack-
ets with 64B. We assigned identifier numbers to transmitted
packets for the purpose of correlation, and the recorded packets
were timestamped using the respective hardware timestamping
features. Previous studies suggests that the primary factor
relevant for packet processing is the number of packets, and
not their size [16], [18].

We use Debian Bullseye 11 (kernel 5.10) and execute a
libmoon [35] layer two forwarding application to minimize
the impact of the application itself, unless specified otherwise.
The forwarding application runs inside the container. All ex-
periments employ the packet rates from 10-1000 kpackets/s to
analyze the effect on latencies. The number of data points col-
lected depends on the packet rate, for example with 1Mpkts/s
we collect 160 million data points per experiment in 160 s.

VI. EVALUATION

Our evaluation of tail latency behavior in packet-processing
containers, focuses on optimizations described in Section IV
including OS kernel variants, such as a real-time (RT) kernel
and a vanilla kernel. We assess packet rate behavior and
compare the outcomes to those of VMs and bare-metal.

A. Scenario

To examine low-latency behavior in container setups, we de-
vised a straightforward scenario depicted in Figure 2. Packets
are generated externally, transmitted to the DuT, and forwarded

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

10 200 600 1000
50 400 800

Figure 3. HDR diagram of latency for selected packet rates (kpkts/s) on
the vanilla Linux kernel without optimizations

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

10 200 600 1000
50 400 800

Figure 4. HDR diagram of latency for selected packet rates (kpkts/s) on
the optimized Linux RT kernel

through a basic packet processing application before being sent
back over another link. The application operates within the
analyzed system.

We employ a libmoon l2 forwarding application to examine
the latency induced by network processing and virtualization
rather than by the application itself. This approach enables
the evaluation of the effect of optimization techniques in
isolation. We examine the same application on VMs and bare-
metal to compare our findings. Through these results, we
provide recommendations for using low-latency applications
in containers and identify any limitations.

To establish the validity of our findings, we repeated all
experiments multiple times, selecting the measurement with
the worst tail-latency for evaluations to ensure the capture of
rare events.

B. Packet Rates

We analyze the latency by comparing the effects on systems
with and without optimizations discussed in Section IV start-
ing with comparing different packet rates. Figure 3 illustrates
the behavior of a non-optimized vanilla compared to the
optimized RT variant presented in Figure 4. The logarithmic
plots show the latency against the percentiles using high-
dynamic-range (HDR) diagrams [40]. Using HDRs allows
to focus on tail latency events to analyze even rare latency
spikes. We focus on tail latencies and rare events during our
evaluation using HDR diagram plots (e.g. Figures 3 and 4).
Across all the rates, the optimized and non-optimized systems

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

RT image
nohz image

vanilla image

Figure 5. HDR diagram of non-optimized variants of Debian kernel at
1Mpkt/s

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

RT image
nohz image

vanilla image

Figure 6. HDR diagram of optimized variants of Debian kernel at 1Mpkt/s

exhibit similar tail-latency behavior at the 99.99th percentile
and 99.9995th percentile, respectively. Lower packet rates are
more susceptible to high latencies in lower percentiles; for
instance, at 200 kpkts/s, more than 50% of all packets reach
a maximum latency of 110 µs. Additionally, all measurements
indicate higher median latencies when the packet rate is
decreased which is suspect to the lower number of measured
packets.

At lower packet rates, the impact on percentiles for rare
events is higher because fewer packets are captured within
the same measurement time. Hence, we conclude that rare
occurrences have a higher impact at lower-rates, no further
observations of reasons for the system were made. Therefore,
higher packet rates are more suitable for tail-latency analysis,
whereas higher rates only are insufficient for median analysis
due to the significant differences in median behavior. Overall,
measurements indicate that all evaluated variants can process
1Mpkts/s with minimally sized packets used further for
detailed evaluations.

C. Optimizations

Additionally, we investigate the difference in OS kernel
variants by including experiments with vanilla, nohz, and RT
kernel. The nohz kernel is using a kernel patch allowing to
remove timer ticks from cores with only one application,
whereas the RT kernel provides deterministic behavior which
should improve latencies constant behavior.

The results of the three kernel variants are presented in
Figures 5 and 6. Figure 5 shows the measurement results the

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1,000

1,200

Measurement time [s]

L
at

en
cy

[µ
s]

Not optimized, vanilla
optimized, RT

Figure 7. 5000 worst latency events for measurements using LXC-containers
based on Debian 11

non-optimized OS in the three kernel variants, revealing a high
tail-latency spike toward 1000 µs at the 99.999th percentile
when using the nohz and vanilla kernel. All kernel variants
exhibit latency spikes at the 99.9th percentile. The RT kernel
variant records a maximum latency of around 140 µs. In
contrast, Figure 6 shows the results for the optimized OS,
where the RT variant had a slightly lower maximum latency of
110 µs compared to the non-optimized RT variant. Moreover,
the nohz and vanilla kernel variants led to significantly lower
tail latencies at around 510 µs compared to the measurements
using kernels without optimization.

Concerning tail latency, the optimized outperform the non-
optimized variants affected by interrupts and rescheduling.
Similar to the findings of related work on bare-metal [21],
our measurements indicate that the nohz variant attains nearly
the same tail latencies as the vanilla one on Debian 11. Using
the RT variant displays similar results compared to the vanilla
one up to 99.99th percentile of latencies. However, latencies
do not increase further, which limits the tail latency. The nohz
kernel can only provide benefits when the no scheduling is
needed, but LXC requires this to schedule the container engine
on the relevant cores. Whereas the RT kernel provides more
stable tail-latencies due to the deterministic behavior of the
OS kernel operations.

In Figure 7, the 5000 worst-case events of our baseline
measurements using the non-optimized vanilla variant are
compared to those of an optimized RT one. The behavior of
the optimized RT kernel variant is similar to that of the non-
optimized vanilla kernel variant without the rare, significant
outliers which are caused by rare interrupts scheduled on the
packet processing core.

D. Container vs. VMs

Figure 8 presents a comparison of measurements between
container and VM setups using an optimized RT and a non-
optimized vanilla variant. The forwarding application for this
experiment is executed inside the VM compared to inside the
container. The VMs are operating as KVM instances on the
DuT. In our measurements, the RT kernel variant demonstrates
better results, which we attribute to the utilization of Debian
11 in contrast to Debian 10 used in related work [2], [6].

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

LXC RT optimized
VM vanilla

Figure 8. HDR diagram of latency on VMs and LXC containers

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]
L

at
en

cy
[µ
s]

LXC RT optimized
Bare-metal vanilla

Figure 9. HDR diagram of latency from measurements using bare-metal and
LXC containers

As presented in Figure 8, the performance differences
between VMs and containers are insignificant concerning tail
latencies. With VMs in the vanilla variant showing lower tail-
latencies due to a better isolation by default. However, VMs
with higher overhead reach the same maximum tail latency
at lower percentiles. By carefully isolating and optimizing
containers, similar results compared to VMs can be achieved,
requiring fewer resources.

E. Container vs. Bare-metal

For this comparison, the forwarding application is executed
directly on bare-metal compared to running inside a container.
The vanilla variant for containers, which provides minimal
container isolation by default, yields slightly lower tail laten-
cies (Figure 9). Meanwhile, optimized bare-metal experiments
slightly outperform optimized containers primarily due to a
higher degree of isolating the forwarding application from
interrupts. Our findings differ from those reported in [21] as
we use a different mainboard. Specifically, [21] used an Intel
mainboard with Intel CAT for pinning the cache to a specific
core, which is currently not supported by AMD. Furthermore,
they used a DPDK l2fwd application without Lua as wrapper,
which can result in additional latencies caused by the wrapper.
Although bare-metal configurations are generally preferable
due to better resource isolation, containers may be used when
resource sharing is necessary.

To conclude, containers exhibit only a minimal overhead
compared to bare-metal, contingent on the underlying hard-

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

User-space RT optimized
kernel-space vanilla

Figure 10. HDR diagram of latency showing measurements on kernel- versus
user-space packet processing

ware, which may vary. Consequently, hardware selection is
critical when ultra low-latencies are required.

F. User-space vs. Kernel-space Network Driver on Container

Thus far, networking in user-space have been examined. For
comparison with kernel-space networking, we investigated a
Linux traffic control mirroring application. The application en-
ables the assessment of the impact of kernel-space networking.

Figure 10 shows the tail latency for kernel-space networking
compared to user-space networking.The tail latency after the
99.999th percentile was similar for both variants of packet
processing. The optimized variants measured a maximum
latency of 110 µs in experiments. Compared to the 99.8th

percentile for user-space packet processing the latency in-
creases gradually for the 50th percentile. This suggests that
the optimizations employed for user-space can be used for
kernel-space processing. Thus, container isolation enables the
use of kernel drivers for low-latency applications.

In the non-optimized variant, the tail latency in kernel-space
networking exhibits a worse performance, with a difference
of one order of magnitude. However, comparing kernel- and
user-space packet processing in containers reveals that both are
valuable for low-latency applications in containers, provided
that optimization techniques are carefully used. Evaluating in
general using user-space networking was clearly an advan-
tage as it outperforms kernel-space-networking in the non-
optimized variant and the tail-latency in the optimized variant
do not differ significantly.

VII. TAIL LATENCY MODEL

We use EVT to model the tail latency behavior of each
measurement. Each model is generated using the first 20%
of measurement datapoints and validated using the following
80%. The model is derived using the peaks-over-threshold
method with a threshold set at the 99.95th percentile value of
measured latencies. Then, it is fitted to a Generalized Pareto
Distribution (GPD) using a maximum likelihood estimator
with a confidence level of 95%. This model can be used to
calculate the return level xm for an arbitrary return period m,
as shown in Equation (1), with the threshold µ, scale σ, tail ξ,
and the proportion of latencies larger than the threshold Dd>µ

D .
The return level represents the magnitude of latencies, which

Table II
COMPARISON OF EVT PREDICTIONS FOR EACH PLATFORM AND IMAGE.

SHOWS THE PERCENTAGE OF CONVERGING MODELS (xm →) AND MEAN
NUMBER OF RETURN LEVEL EXCEEDANCES (µ ↑). CONVERGENCE IS

BETTER THE CLOSER TO 100%, EXCEEDANCES ARE BETTER THE CLOSER
TO 1.

Platform Image

Vanilla opt. RT

xm → µ ↑ xm → µ ↑

Bare-metal 16.7% 0.33 60.0% 3.30
Virtual Machine 25.0% 2.58 58.3% 4.00
Container 16.7% 1.50 66.7% 3.83

Table III
TAIL-LATENCY VALUES FOR NON-OPTIMIZED VANILLA AND OPTIMIZED
RT VERSION FOR ALL THREE SYSTEMS WITH USER-SPACE NETWORKING

AND KERNEL-SPACE NETWORKING ON CONTAINERS ONLY

Technology non-optimized vanilla optimized RT

container
kernel-space 9969.08 µs 100.19 µs
user-space 659.25 µs 108.86 µs

VM 840.63 µs 124.12 µs

Bare-metal 1077.44 µs 101.81 µs

is expected to be exceeded precisely once during the return
period [30]. It is effectively the expected worst-case latency
during a given period. This can be seen as a complementary
measure to worst-case latency bounds obtainable by analytical
methods, such as network calculus. The limit of this function
for m → ∞ describes the behavior of the tail latencies
on an arbitrarily long time horizon, signifying convergence
or divergence. We validated the models by comparing the
return levels and their convergence behaviors to the remaining
80% of the data, predicting tail latencies on a four-fold time
horizon.

xm = µ+
σ

ξ
·

[(
m · Dd>µ

D

)ξ

− 1

]
(1)

Table II shows the percentage of converging models (xm →)
and the number of return-level exceedances (µ ↑) for each
platform and variant. A high proportion of converging models
indicates that the data is more appropriate to be represented by
this type of statistical model. We can observe that containers
using the RT variant have the highest percentage of converging
models at 66.7%. While this is not an optimal result, it shows
significant improvement over the other variants. Further im-
provements might be gained by tweaking the threshold value.
The mean return-level exceedances should ideally be equal
to 1, indicating a model with good predictive capabilities. The
analysis indicates that containers using a vanilla variant exhibit
the best mean exceedance behavior.

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

Table IV
SUMMARIZED RECOMMENDATIONS WITH RANKS FOR EACH CATEGORY

FROM ✓✓✓(BEST) TO ×××(WORST).

Technology Latency Security Resources

VM
optimized ✓ ✓✓ ×
non-optimized ××× ✓✓ ✓

Container
optimized ✓✓ ✓ ✓✓
non-optimized × ✓ ✓✓✓

Bare-metal
optimized ✓✓✓ ✓✓✓ ××
non-optimized ×× ✓✓✓ ××

VIII. RECOMMENDATIONS FOR LOW-LATENCY-SLICED
APPLICATIONS

Table III presents the tail-latency of the optimized RT and
the non-optimized vanilla variant for each technology. We
recommend a top-down strategy for the choice of a system
for URLLC based on the presented findings. While a bare-
metal solution is best suited for commodity hardware, it can
be resource-intensive and challenging to respond to on-the-fly
demands. Our measurements herein demonstrated that VMs
and containers perform similarly, therefore, we recommend
to analyze additional aspects such as security and resource
usage. We recommend the use of containers to ensure re-
duced resource usage and high flexibility. However, if higher
security and isolation of applications are required, VMs are
recommended. Containers and VMs can be hosted on the same
hardware system providing both to customers.

Table IV summarizes the recommendations. We have ranked
the categories for non-optimized and optimized VMs, contain-
ers, and bare-metal solutions. Generally, optimized variants
perform better than non-optimized variants in all systems,
whereas the choice of technology ultimately depends on the
infrastructure, requirements, and available resources.

IX. LIMITATIONS

Our analysis of virtualization overhead was based on single
instances and not concurrent ones. Only simple applications
were analyzed since our focus was technology induced latency.

We did not examine shared network resources, such as
previous studies [6] and [2] have analyzed for VMs. Further
studies are necessary to explore potential improvements and
provide a more in-depth analysis of shared system resources.

Our analysis focuses exclusively on the behavior of LXC
containers, since previous studies indicate that alternative
solutions introduce additional overhead [8], [12]. However,
this has not been verified further, and comparing container
solutions for improving latency is part of future research.

X. REPRODUCIBILITY

The scripts, raw data, and analyses results required to
reproduce our findings are available online, including the

raw PCAPs, the data extracted from these PCAPs, and the
plots obtained for each measurement1. The scripts enable the
reproduction of all measurements and calculations on other
systems, provided that the necessary hardware is available for
per-packet timestamping along with passive optical TAPs.

XI. CONCLUSION AND FUTURE WORK

The need for reliable and predictable low-latency is critical
in applications such as autonomous driving or remote medical
procedures. Additionally, resource sharing and on-demand
service provisioning, such as network slices in 5G, are also
vital. This study demonstrates that lightweight virtualization
is a suitable alternative for high-reliability, low-latency appli-
cations. However, achieving this requires tactful selection of
optimization parameters, such as using rt-kernels.

We can use a user-space networking application to achieve
high reliability and significantly reduce tail latency. Further-
more, VMs and containers exhibit comparable performance;
however, containers require fewer resources but cannot be
completely isolated. We employed an EVT model to assess the
predictability of tail latencies in containers. It was found that
an optimized system in container with an RT kernel is more
converging in models than any configuration based on VMs
or bare-metal. This study presents the first in-depth analysis
of packet-processing latency in containers.

Further, we plan to analyze the influence of concurrent
containers, CPU resource sharing, and evaluate the potential of
SR-IOV-based NIC sharing to improve low-latency and high
availability of resources. We also plan to enhance predictability
using statistical methods over time to enable accurate planning.
Finally, we plan to investigate and compare different container
solutions and their latencies beyond current findings as well as
the effect on using VMs and containers on the same system.

ACKNOWLEDGMENTS

This work was supported in part by the European Union
Horizon 2020 research and innovation programme (project
SLICES-SC, 101008468, and SLICES-PP, 101079774), the
Bavarian Ministry of Economic Affairs, Regional Develop-
ment and Energy (project 6G Future Lab Bavaria), and the
German Federal Ministry of Education and Research (project
6G-life, 16KISK002, and project 6G-ANNA, 16KISK107).

REFERENCES

[1] “5G: Study on Scenarios and Requirements for Next
Generation Access Technologies,” 2017, Last accessed: May 22,
2023. [Online]. Available: https://www.etsi.org/deliver/etsi tr/138900

138999/138913/17.00.00 60/tr 138913v170000p.pdf
[2] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of

Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP Network
Operations and Management Symposium, Budapest, Hungary, April 20-
24, 2020. IEEE, 2020, pp. 1–9.

[3] RedHat, “cpuset - Red Hat Enterprise Linux 6,”
2023, Last accessed: May 22, 2023. [Online].
Available: https://access.redhat.com/documentation/en-
us/red hat enterprise linux/6/html/resource management guide/sec-
cpuset

1https://wiednerf.github.io/containerized-low-latency/

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

[4] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead
Comparison between Hypervisor and Container Based Virtualization,”
in 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), 2017, pp. 955–962.

[5] A. K. Yadav, M. L. Garg, and Ritika, “Docker containers versus
virtual machine-based virtualization,” in Emerging Technologies in Data
Mining and Information Security, A. Abraham, P. Dutta, J. K. Mandal,
A. Bhattacharya, and S. Dutta, Eds. Singapore: Springer Singapore,
2019, pp. 141–150.

[6] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Ducked Tails:
Trimming the Tail Latency of(f) Packet Processing Systems,” in 17th
International Conference on Network and Service Management, CNSM
2021, Izmir, Turkey, October 25-29, 2021, P. Chemouil, M. Ulema,
S. Clayman, M. Sayit, C. Çetinkaya, and S. Secci, Eds. IEEE, 2021,
pp. 537–543.

[7] D. Gedia and L. Perigo, “Performance evaluation of sdn-vnf in virtual
machine and container,” in 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks, 2018, pp. 1–7.

[8] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003, M. L. Scott and L. L. Peterson, Eds. ACM, 2003, pp. 164–177.

[10] L. Abeni, C. Király, N. Li, and A. Bianco, “Tuning KVM¸ to enhance
virtual routing performance,” in Proceedings of IEEE International
Conference on Communications, ICC 2013, Budapest, Hungary, June
9-13, 2013. IEEE, 2013, pp. 3803–3808.

[11] M.-N. Tran and Y. Kim, “Network Performance Benchmarking for
Containerized Infrastructure in NFV environment,” in 2022 IEEE 8th
International Conference on Network Softwarization (NetSoft), Jun.
2022, pp. 115–120.

[12] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison,” in 2015 IEEE International
Conference on Cloud Engineering, 2015, pp. 386–393.

[13] J.-G. Cha and S. W. Kim, “Design and Evaluation of Container-based
Networking for Low-latency Edge Services,” in 2021 International Con-
ference on Information and Communication Technology Convergence
(ICTC), Oct. 2021, pp. 1287–1289.

[14] S. Lin, P. Cao, T. Huang, S. Zhao, Q. Tian, Q. Wu, D. Han, X. Wang,
and C. Zhou, “Xmasq: Low-overhead container overlay network based
on ebpf,” CoRR, vol. abs/2305.05455, 2023.

[15] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson, “Slim: OS kernel support for a Low-Overhead
container overlay network,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 331–344. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/zhuo

[16] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, and
P. Giaccone, “A benchmarking methodology for evaluating software
switch performance for NFV,” in 2019 IEEE Conference on Network
Softwarization (NetSoft), Jun. 2019, pp. 251–253.

[17] G. K. Lockwood, M. Tatineni, and R. Wagner, “SR-IOV: Performance
Benefits for Virtualized Interconnects,” in Annual Conference of the
Extreme Science and Engineering Discovery Environment, XSEDE ’14,
Atlanta, GA, USA - July 13 - 18, 2014, S. A. Lathrop and J. Alameda,
Eds. ACM, 2014, pp. 47:1–47:7.

[18] J. Liu, “Evaluating standard-based self-virtualizing devices: A perfor-
mance study on 10 GbE NICs with SR-IOV support,” in 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
Apr. 2010, pp. 1–12.

[19] Intel Corporation, Oct 2013. [Online]. Available:
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-
second-gen-interface-spec-v2-rev1-1.html

[20] “How to use virtualbmc,” Jul 2020. [Online]. Available:
https://docs.openstack.org/virtualbmc/latest/user/index.html

[21] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “How Low Can You
Go? A Limbo Dance for Low-Latency Network Functions,” Journal of
Network and Systems Management, vol. 31, no. 20, Dec. 2022.

[22] D. Bozilov, M. Knezevic, and V. Nikov, “Optimized threshold imple-
mentations: securing cryptographic accelerators for low-energy and low-
latency applications,” J. Cryptogr. Eng., vol. 12, no. 1, pp. 15–51, 2022.

[23] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.
Ramakrishnan, and J.-C. Chen, “L25GC: A Low Latency 5G Core Net-
work Based on High-Performance NFV Platforms,” in Proceedings of
the ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 143–157.

[24] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: A New Design
Element for Low-Latency DCNs,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, p. 283–294, aug 2014.

[25] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Comput. Surv., vol. 53, no. 2, mar 2020.

[26] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud Scale Load Balancing with Hardware and
Software,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p. 27–38,
aug 2014.

[27] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-Architecting Datacenter Networks and
Stacks for Low Latency and High Performance,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 29–42.

[28] DPDK Project, “Home - DPDK,” 2023, Last accessed: May 22, 2023.
[Online]. Available: https://www.dpdk.org/

[29] C.-N. Mao, M.-H. Huang, S. Padhy, S.-T. Wang, W.-C. Chung, Y.-C.
Chung, and C.-H. Hsu, “Minimizing Latency of Real-Time Container
Cloud for Software Radio Access Networks,” in 2015 IEEE 7th In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom), 2015, pp. 611–616.

[30] S. Coles, J. Bawa, L. Trenner, and P. Dorazio, An Introduction to
Statistical Modeling of Extreme Values. Springer, 2001, vol. 208.

[31] T. Hsing, “On Tail Index Estimation Using Dependent Data,” The Annals
of Statistics, vol. 19, no. 3, pp. 1547–1569, 1991.

[32] M. Helm, F. Wiedner, and G. Carle, “Flow-level Tail Latency Estimation
and Verification based on Extreme Value Theory,” in 18th Interna-
tional Conference on Network and Service Management, CNSM 2022,
Thessaloniki, Greece, October 31 - Nov. 4, 2022, M. Charalambides,
P. Papadimitriou, W. Cerroni, S. S. Kanhere, and L. Mamatas, Eds.
IEEE, 2022, pp. 359–363.

[33] N. Mehrnia and S. Coleri, “Wireless Channel Modeling Based on
Extreme Value Theory for Ultra-Reliable Communications,” IEEE Trans.
Wirel. Commun., vol. 21, no. 2, pp. 1064–1076, 2022.

[34] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and Low-Latency
Wireless Communication: Tail, Risk, and Scale,” Proc. IEEE, vol. 106,
no. 10, pp. 1834–1853, 2018.

[35] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 275–287.

[36] AMD, “Performance Tuning Guidelines for Low Latency Response on
AMD EPYC-Based Servers Application Note,” Jun. 2018, Last accessed:
May 22, 2023. [Online]. Available: http://developer.amd.com/wp-
content/resources/56263-Performance-Tuning-Guidelines-PUB.pdf

[37] J. Mario and J. Eder, “Low Latency Performance
Tuning for Red Hat Enterprise Linux 7,” Nov.
2017, Last accessed: May 22, 2023. [Online]. Avail-
able: https://access.redhat.com/sites/default/files/attachments/201501-
perf-brief-low-latency-tuning-rhel7-v2.1.pdf

[38] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: a methodology and toolchain for reproducible network
experiments,” in CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event,
Munich, Germany, December 7 - 10, 2021, G. Carle and J. Ott, Eds.
ACM, 2021, pp. 259–266.

[39] Intel Corporation, “E810 datasheet
rev2.5.” [Online]. Available: https://cdrdv2-
public.intel.com/613875/613875 E810 Datasheet Rev2.5.pdf

[40] G. Tene, “HDRHistogram: A High Dynamic Range Histogram,”
Aug. 2021, Last accessed: May 22, 2023. [Online]. Available:
http://hdrhistogram.org/

Authorized licensed use limited to: University of Thessaly. Downloaded on February 24,2025 at 08:33:55 UTC from IEEE Xplore. Restrictions apply.

