interdigital

EMPOWER 6G Roadmap

Dr Alain Mourad, Senior Director R&I at InterDigital EUCNC 2022 07 June 2022

WE INVENT THE TECHNOLOGIES THAT MAKE LIFE BOUNDLESS

EMPOWER in a nutshell

- H2020-funded project targeting EU-US Collaboration for advanced wireless (B5G/6G)
- <u>Mission:</u> To accelerate the joint development between the EU and the US of advanced wireless platforms targeting the **new connectivity frontiers beyond 5G**
- <u>Main Objectives:</u>
- Focus here
- To establish common wireless R&D technology roadmaps at different time-scales covering scientific research, standards, spectrum and regulation.
- To orchestrate and support cross Atlantic collaboration on tools for advanced wireless platforms experimentation, evaluation and data management.
- To establish and sustain the growth of advanced wireless communities in Europe and USA through engagement of all stakeholders.

interdigital.

©2022 InterDigital, Inc. All Rights Reserved.

6/13/22

The EMPOWER Technology Roadmap

- Purpose is two-fold:
 - 1. Build a **common knowledge** for the EUUS wireless R&D communities on the future wireless research directions;
 - 2. To help define **areas of priority** for EUUS to co-work on ahead of worldwide competition for B5G standards
- Roadmap was released **annually** in 2019, 2020, and 2021
- Final roadmap downloadable from EMPOWER:

https://www.advancedwireless.eu/sdm_downloads/deliverable2-5/

- Roadmap effort contributed actively to the incubation of ETSI RIS ISG
- It also contributed to ITU-R IMT-2030 Vision and Tech Trends draft report

EMPOWER Roadmap: Envisioned Services

H2020 EMPOWER <u>www.advancedwireless.eu</u>

- Multi-Sensory Extreme Reality (XR) and Haptics
- Connected Industries and Automation
- Autonomous Vehicles and Swarm Systems
- Extreme Coverage and Reaching the last Billion

	User	Late	ency		Connection	Enormy		Coverage	Mobility
	Data Rate	C- Plane	U- Plane	Reliability	Density	Energy Efficiency	Positioning	Area Probability	
Multi- Sensory XR									
Connected Industry									
Auto and Swarm									
Extreme Coverage									

ITU-R IMT2030 DRAFT

- 1 Holographic communication, tactile internet and VR/ARbased sensing
- Industry 4.0, fully autonomous driving and navigation, and smart rail-systems

UAV-based systems, integrated satellite and radar networks

Smart cities and massive IoT

ti> interdigital.

©2022 InterDigital, Inc. All Rights Reserved.

6/13/22

EMPOWER Roadmap: IMT-2030 Target Capabilities

Wireless Capabilities

IMT-2020

	1111-2020	101-2030
Spectrum	Up to 100 GHz	Carrier frequencies up to 300 GHz
Bandwidth	At least 100 MHz; Up to 1 GHz	Single channel bandwidth above 10 GHz
Peak data rate (DL/UL)	20 Gbps (DL) 10 Gbps (UL)	Peak data rate exceeding 200 Gbps (downlink) and 100 Gbps (uplink) Update: 1 Tbps (current IMT-2030 assumption)
User data rate (DL/UL)	100 Mbps (DL) 50 Mbps (UL)	Average user data rate exceeding 1 Gbps (downlink) and 0.5 Gbps (uplink) for multi-sensory XR and volumetric media streaming
U-plane Latency	4 ms for eMBB 1ms for URLLC	U-plane latency below 0.5 ms for connected industries, autonomous vehicles and tactile use cases Update: 25 us to 1 ms (current IMT-2030 assumption)
C-Plane Latency	Below 20 ms (10 ms desired)	Control plane latency below 5 ms for connected industries, autonomous vehicles and tactile use cases
Reliability	Up to 5 nines	Reliability up to 8 nines for connected industries and autonomous vehicles
Connection Density	1 device per sqm	Connection density up to 10 devices per sqm (10m devices per km2) for ultra-massive sensor networks
Energy Efficiency	Qualitative	Terminal and network energy efficiencies up by 1000x today's values 5G system Update: 100 to 1000x (current IMT-2030 assumption)
Positioning Accuracy	NA	Positioning accuracy below 5 cm (indoor) and 10 cm (outdoor) helped by joint sensing and communications
Mobility	Up to 500 kmh	Mobility exceeding 1000 kmh for flying objects (e.g. airplanes) supported by the integration with non-terrestrial networks

*Update based on ITU-R IMT-2030 DRAFT compared to initial EMPOWER roadmap

야 interdigital

©2022 InterDigital, Inc. All Rights Reserved.

6/13/22

EMPOWER Roadmap: NET-2030 Target Capabilities

Network Capabilities

	NET-2020	NET-2030
Automation	Human operated	Self-operating requiring human operators to only validate the decisions
Flexibility	Service-based and slicing limited to core/transport	Fine-grain flexibility based on micro-services and improved end-to-end slicing (core; transport; access; device)
Service deployment time	Few hours	Reduced by a factor of 10 compared to similar tasks in 2020, based on slice creation and instantiation on the fly
Latency	Few tens of ms	Enabling application to application response time in the few milliseconds range
Determinism and Resilience	Limited to wired	Extended to support deterministic and resilient networking for industrial wireless
High network bandwidth	100s Gbps and a few biillion devices	Supporting Terabits per second throughputs and trillions of devices
Data-driven and distribution	Centralized big-data based analytics in core and cloud	Supporting small-data based distributed analytics and distributed AI
Energy consumption	Moderate	A significant energy reduction of network operation compared to 2020
EMF-awareness	Moderate	Support deployment in areas with challenging EMF limits (due to spectrum bands and network densification)
Coverage	Segregated terrestrial and satellite	Ubiquitous based on integration of terrestrial and non-terrestrial networks (satellites and HAPs)
Security and trust	Moderate	Enhanced security based on cyber-physical integration; AI; and quantum keys

*Reference: Horizon Europe, Smart Networks and Services, 2021-2027

i> interdigital

©2022 InterDigital, Inc. All Rights Reserved.

EMPOWER Roadmap: IMT-2030 Technology Trends

Wireless Technologie	s 2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	To	oday 🔤								Future
Spectrum	Backhaul/Access: (1) sub-6 GHz; and (2) up to 100 GH:		ements for up to 1 rum (6-7 GHz; 100		New desig Al-aided spectrum	n for spectrum abo management; joir			ign for spectrum u egrated sensing an	
Massive MIMO	Centralized arch.; Up to 256 AAs; Digital/Digital- Analogue beamforming		ments to beamfor equencies and mu		directivity at h	arrays (e.g. 512 or igher frequencies) nated multi-point		or mo	ohic beamforming; pre; Reconfigurable s; Al-aided ultra m	e intelligent
Waveforms	OFDM-based with flexible numerology		ased with new nur ed to new freque				assive MTC (e.g. U racy; and (4) low p			pulse-based);
Coding and Modulations	LDPC/Polar codes; Uniforn constellations (up to 256QAM)	Ennancer	nents to LDPC/Pola on-uniform conste			· · · ·	DPC/Polar/Read-M non-uniform const			
Multiple Access	Orthogonal T/F/C-DMA; TDD/FDD duplexing		nited enhancemen Dynamic duplexing				f non-orthogonal n nce of in-band full			
Multi-connectivity	Dual connectivity (e.g. 3GPP); Dual-access (3GPP- WiFi)	unlic	ated access (licens ensed; 3GPP and V IAB enhancement	WiFi);	Ν		l multi-connectivit tical wireless); Al-a			
Low power	Power saving (3GPP); and wake-up radio (IEEE 802.11)	optore	w 10's of % increa life, handset stand			/ TRX operating wi vesting including b		reachin	assisted self-susta g power density o Wireless power tra	f 0.1W/mm2;
Positioning	Solutions <1m; Ongoing specs (.11az, 3GPP)	сооре	l accuracy <20 cm erative techniques cies and angular se	, high	Improve		n based on integra with non-terrestri			ing;

i> interdigital

©2022 InterDigital, Inc. All Rights Reserved.

6/13/22

EMPOWER Roadmap: NET-2030 Technology Trends

Network Technologies 2021		20)22	2023	2024	2025	2026	2027	2	2028	2029	2030	
		<mark>-</mark>	Today										Future
Edge native computing		oud solutions; Ong ations (ETSI MEC/3			-5G integration; In rworking and fede		Support for mobi	le and power-cor	nstrained edge hos	ts		ed solutions and a tion across doma	
Virtualization		l NFV enablers; Ma cations (e.g. ETSI N			estration of Core S nproved runtime	· · · · · · · · · · · · · · · · · · ·			portability of virtua he core and RAN	ıl		ons for VNF supp nstrained mobile	
Slicing		ature in 5GS; Ongo ccifications (3GPP)	ing		oved control of dis s, and inter-slice in			Support for "o	n the fly" slice crea	ation, i	instantiation	and scaling	
Deterministic and reliable networking		ed in wired netwo d in IETF and IEEE 8		Suppo	rt for wireless (e. networks)	g. private			reliability and avai time sensitivity to				
Automation and Network AI/ML	solution	a based managem ns (OSS/BSS); Ongc ications (3GPP, ETS	oing		ed network contr real time RAN ma				ta based distribute trol and user plane			mation and distri d including on-the	
Non-terrestrial networks	Ongo	e systems (GEO/LE ing specification fo ntegration (e.g. 3G	or		rgence with terres ation, edge, slicin			egration with ter ctivity, extreme c	· · · · · · · · · · · · · · · · · · ·		3	sions for support ized (nano) satell	
Distributed ledgers		based solutions; Ea cations (e.g. ETSI P SAI)			kchain for networ nagement and se		Blockch	ain for support of	distributed netwo	rks, di	stributed AI,	and distributed E	idge
Quantum Internet	Prelimin	ary research starte IETF	ed in	Si	ngle hop experim	ents	Multi-hop dep	loyments but wit	h low # of Qubits		X	II out of larger sc with higher # of C	
[®] N interdicite				1									

i> interdigital.

©2022 InterDigital, Inc. All Rights Reserved.

6/13/22

Next Steps

- Whilst EMPOWER project has officially ended, the roadmap update and dissemination **continue** ...
- Focus ahead is given for supporting the **IMT 2030 and NET 2030** requirements in NGMN, HEU 6GSNS, ATIS NGA, and ITU-R.
- Strong interest in supporting efforts at **ETSI** for roadmapping and pre-standards activities similar to ETSI RIS ISG paving the way towards 6G.

The Networking Channel https://networkingchannel.eu/

- An online platform between EMPOWER, US PAWR, and ACM Sigcomm, for the global wireless networks research community to meet and share the latest on research trends, tools, platforms, etc.
- Started in **March 2021** to host fortnightly webinars quite popular with the community

Transatlantic perspectives on 6G Vision, Roadmap and Development Model

David Boswarthick – ETSI

Mikko Uusitalo – Nokia Bell Labs, Finland

Douglas Castor – InterDigital

Moderator:

Panel discussion. Click here for more information and to register (required, no cost)

> Alain Mourad – InterDigital Europe, EMPOWER Roadmap Lead

