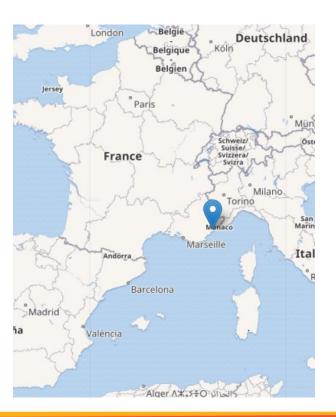


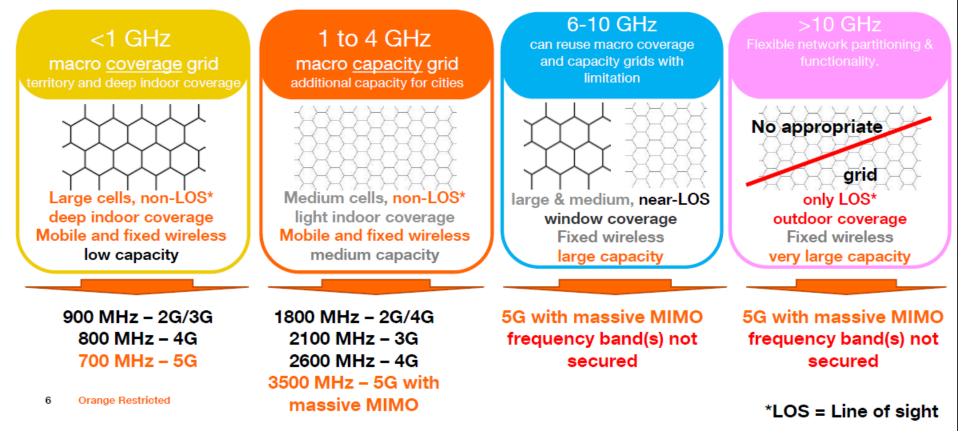
3GPP 5G RAN architecture

Prof. Raymond KNOPP, EURECOM


\$ whoami

Raymond Knopp

- Dept. Head Communication Systems @ EURECOM
- President of the OpenAirInterface Software Alliance
- Long-time SDR and RAN enthusiast


Introduction

- This presentation is part of a EURECOM masters' level course (Mobile Systems, years 4 or 5), some PhD students take it too.
 - Created for 2G/3G/4G by Christian BONNET
 - Usually covers 3GPP RAN and Core
 - Currently has a network focus, other courses (Digital Communications) are more UE
 processing oriented covering some of the basic signal processing aspects
 - Current 5G version by A. Ksentini, N. Nikaein, R. Knopp (we share it), 42 hours
- How we want this to evolve via SLICES-RI
 - 3GPP architecture is very dry without lab sessions
 - Aim to integrate SLICES-RI infrastructure / OAI / Mosaic5G into the course to allow students to explore 3GPP through experimentation
 - "See" the protocol exchanges, build a disaggregated network
 - Play with real tools and equipment

EUROPE Spectrum

Existing physical sites can be reused for 5G except for spectrum above 10 GHz

Main Objectives of 5G/5G-Advanced

- Ultra-flexible radio-access configurations
 - Higher bandwidth
 - Higher spectral efficiency (bits/s/Hz/m²)
 - Bandwidth parts
 - Tailor bandwidth to UE class (like eMTC narrowbands/widebands)
 - New abstractions for service classification down to L1 (slicing)
- Compatibility with 4G/5G core network
 - 5G dual-connectivity (non-standalone operation)
 - Interconnection of evolved 4G eNodeB (ng-eNB) with 5G core
- 5G core cloud-native architecture

Vertical Use-cases (Rel 15/16)

- Public Networks
 - Mobile broadband
 - Gbit/s to mobile device
 - IMS-based voice services
 - New low-latency services (gaming)
 - Fixed broadband
 - Especially USA for now (mmWave acces)
 - NR-V2X
 - Non-critical
- Professional Networks
 - Surveillance
 - Security (low-latency), dense networks (stadium)
 - Smart Agriculture/Aquaculture
 - Industrial Networks
 - Control of machines (tooling, farming equipment)

Rel17/18 extensions

- Rel17
 - NR-V2X
 - Critical services
 - Public-safety
 - Massive machine-type communications
 - Coverage enhancement (CovEnh)
 - Reduced Capacity Devices (RedCap)
 - Further URLLC for Industrial IoT
 - Time-sensitive networking
 - Non puglic Networks
 - Non-terrestrial networks
- Rel 18 (5G advanced)
 - Evolution of DL MIMO
 - Study on AI/ML approaches in the air interface
 - Further Enhancements for coverage
 - Sidelink enhancements + relaying
 - Wakeup signals and network power saving
 - Support for UAV
 - Non-terrestrial network extenstions

A LOOK AT CURRENT 5G STANDARDIZATION

About the IMT/3GPP/NGMN/SCF/ORAN

- IMT = International Mobile Telecommunications
 - UN (Internation Telecommunications Union ITU) standardization body to produce specifications for networking requirements. A big specification release ~ every 10 years
- 3GPP = Third Generation Parternship Project
 - Created at the onset of 3G to federate the standardization process to generate a system
 - Core Network
 - Radio-Access Network
 - Service Architecture
 - Testing Architecture
- NGMN = Next Generation Mobile Networks
 - Operator-driven consortium to produce "recommendations" for implementation of mobile communication systems
 - Example: famous "white-paper" in 2015 to help define 5G from the operator perspective.
- SCF = Small-Cell Forum
 - Produce functional specifications for non-3GPP interfaces tailored to "small-cell" network topologies
- O-RAN = Operator Defined Next Generation RAN Architecture and Interfaces
 - Produce functional specifications for non-3GPP interfaces aiding the deployment of disaggregated 3GPP network

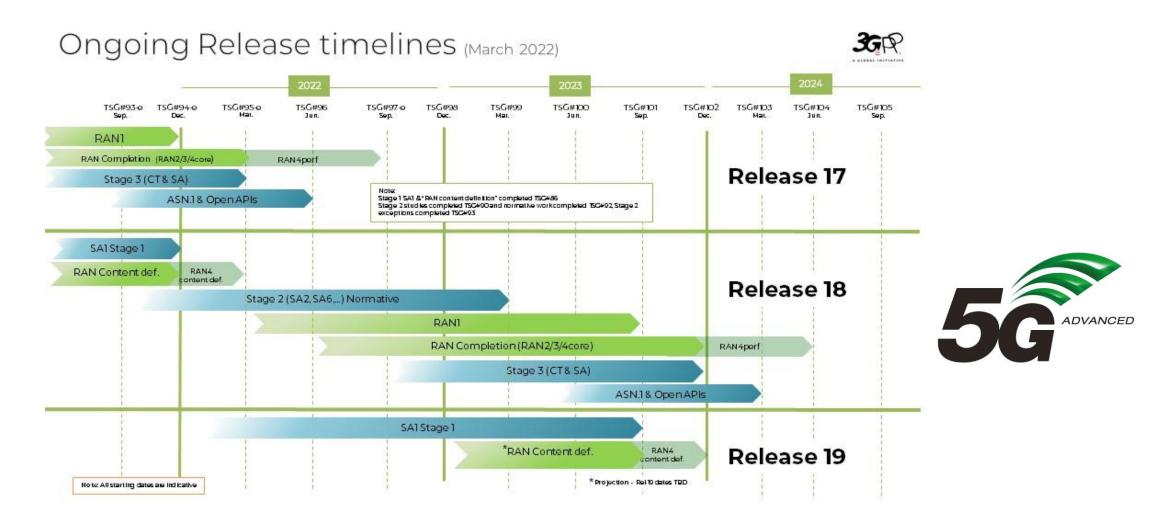
IMT 2020 Requirements for 5G

Capability	Description	5G requirement	Usage scenario
Downlink peak <u>data rate</u>	Minimum maximum data rate technology must support	20 Gbit/s	<u>eMBB</u>
Uplink peak data rate		10 Gbit/s	<u>eMBB</u>
User experienced downlink data rate	Data rate in dense urban test environment 95% of time	100 Mbit/s	еМВВ
User experienced uplink data rate		50 Mbit/s	еМВВ
Latency	Radio network contribution to packet travel time	4 ms	eMBB
		1 ms	URLLC
Mobility	Maximum speed for handoff and <u>QoS</u> requirements	500 km/h	eMBB/URLLC
Connection density	Total number of devices per unit area	10 ⁶ /km ²	<u>mMTC</u>
Energy efficiency	Data sent/received per unit energy consumption (by device or network)	Equal to 4G	eMBB
Area traffic capacity	Total traffic across coverage area	10 Mbps/m ²	еМВВ
Peak downlink <u>spectrum efficiency</u>	Throughput per unit wireless bandwidth and per network cell	30 bit/s/Hz	eMBB

- IMT-2030 has started!
- Expect a new slide soon ^(C)

- 3GPP is a consortium with seven national or regional telecommunication standards organizations as primary members ("organizational partners")
- variety of other organizations as associate members ("market representation partners"), like 4G Americas, 5G Infrastructure Association (5GIA), NGMN, etc.

/				
Organization	Country/region	Website		
Association of Radio Industries and Businesses (ARIB)	Japan	<u>ARIB</u>		
Alliance for Telecommunications Industry Solutions (ATIS)	USA	<u>ATIS</u>		
China Communications Standards Association (CCSA)	China	<u>CCSA</u>		
European Telecommunications Standards Institute (ETSI)	Europe	<u>ETSI</u>		
Telecommunications Standards Development Society (TSDSI)	India	<u>TSDSI</u>		
Telecommunications Technology Association (TTA)	South Korea	TTA		
Telecommunication Technology Committee (TTC)	Japan	TTC		



3GPP

- The 3GPP organizes its work into three different streams:
 - Radio Access Networks (RAN)
 - Services and Systems Aspects (SA)
 - Core Network and Terminals (CT)
- The three groups produce documents ultimately resulting in specifications.
- 3GPP standards are structured as Releases which represent an evolving set of functionalities.

3GPP Release Timeline (today's)

Key RAN specifications (L2)

3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

3GPP TS 38.401: "NG-RAN; Architecture description".

3GPP TS 33.501: "Security Architecture and Procedures for 5G System".

3GPP TS 37.340: "NR; Multi-connectivity; Overall description; Stage-2".

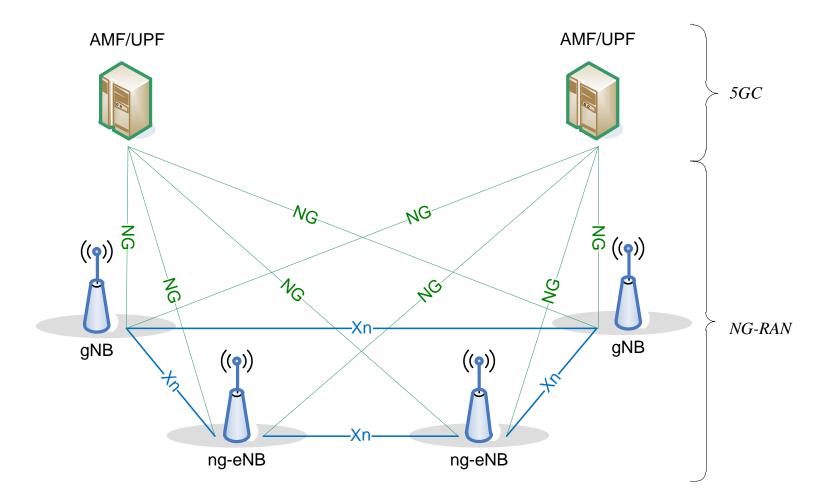
3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification".

3GPP TS 38.322: "NR; Radio Link Control (RLC) protocol specification".

3GPP TS 38.323: "NR; Packet Data Convergence Protocol (PDCP) specification".

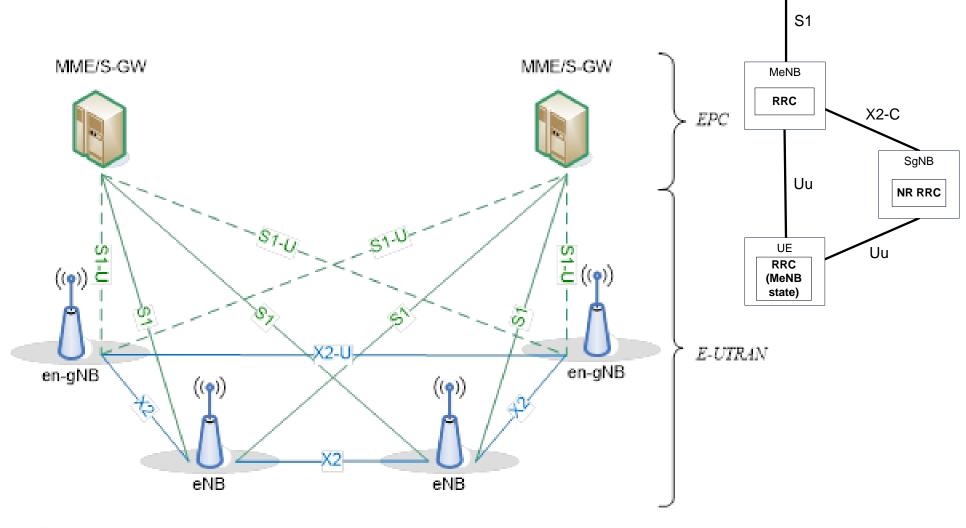
3GPP TS 37.324: "NR; Service Data Protocol (SDAP) specification".

3GPP TS 38.304: "NR; User Equipment (UE) procedures in idle mode".

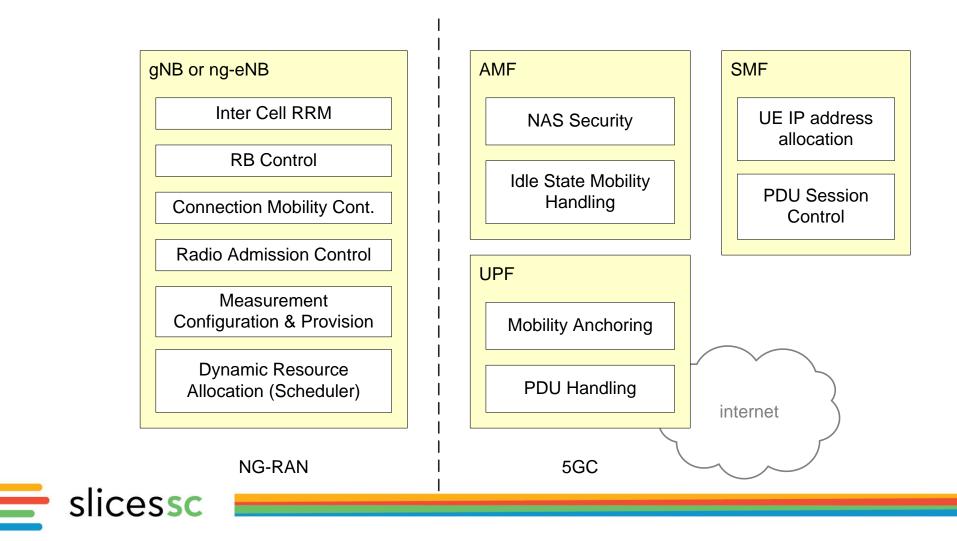

3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities".

3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".

3GPP TS 38.133: "NR; Requirements for support of radio resource management".

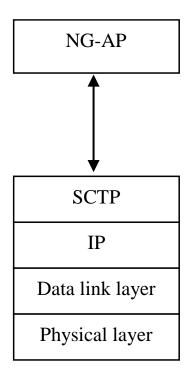


Overall Architecture (with 5G core)


Overall Architecture (with 4G core) – EN-DC

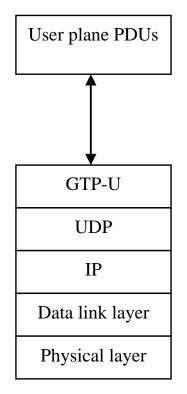
SLICES-SC Summer School -Volos, Greece, 21/07/2022

Functional Split between RAN and 5G Core



Functional Split (gNB, ng-eNB)

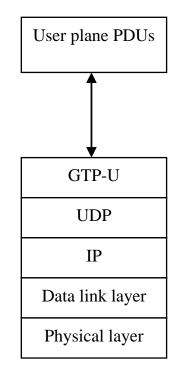
- The gNB and ng-eNB host the following functions:
 - Functions for Radio Resource Management: Radio Bearer Control, Radio Admission Control, Connection Mobility Control, Dynamic allocation of resources to UEs in both uplink and downlink (scheduling);
 - IP header compression, encryption and integrity protection of data;
 - Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE;
 - Routing of User Plane data towards UPF(s);
 - Routing of Control Plane information towards AMF;
 - Connection setup and release;
 - Scheduling and transmission of paging messages (originated from the AMF);
 - Scheduling and transmission of system broadcast information (originated from the AMF or O&M);Measurement and measurement reporting configuration for mobility and scheduling;
 - Transport level packet marking in the uplink;
 - Session Management;
 - Support of Network Slicing;
 - QoS Flow management and mapping to data radio bearers;
 - Support of UEs in RRC_INACTIVE state;
 - Distribution function for NAS messages;
 - Radio access network sharing;
 - Dual Connectivity;
 - Tight interworking between NR and E-UTRA.


NG-C (N1/N2) Interface

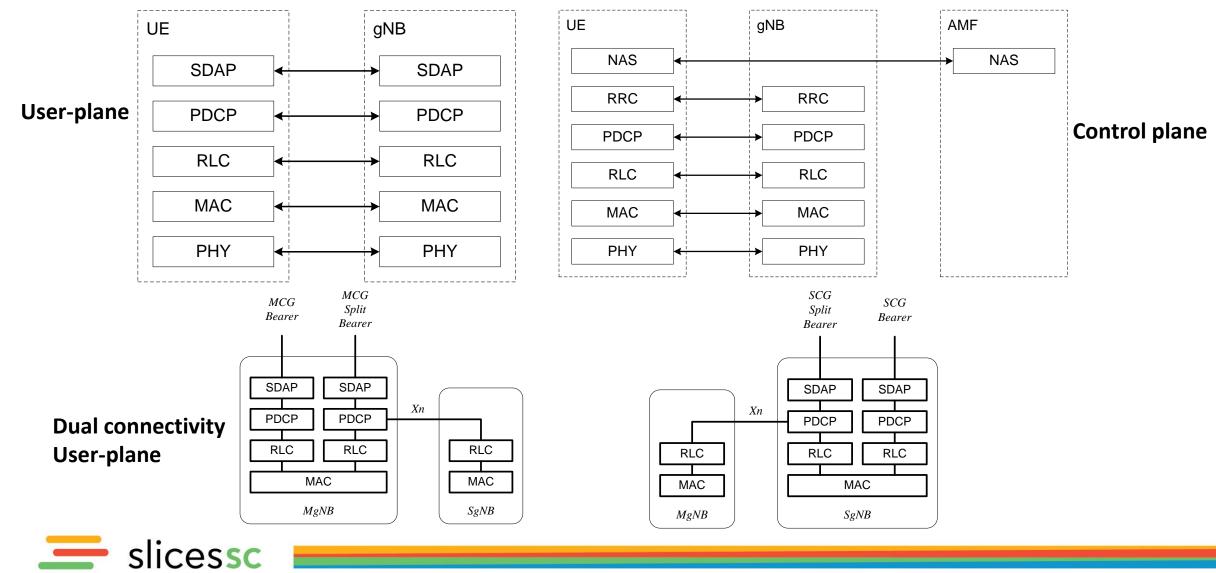
- NG-C provides the following functions:
 - NG interface management;
 - UE context management;
 - UE mobility management;
 - Transport of NAS messages (N1);
 - Paging;
 - PDU Session Management;
 - Configuration Transfer;
 - Warning Message Transmission.

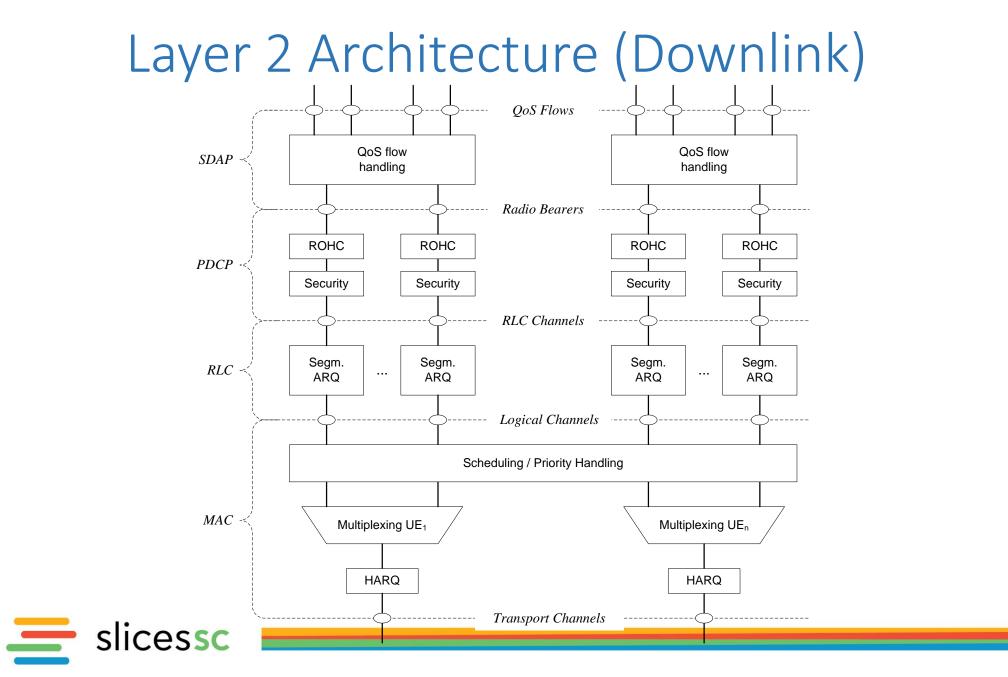
NG-U (N3) Interface

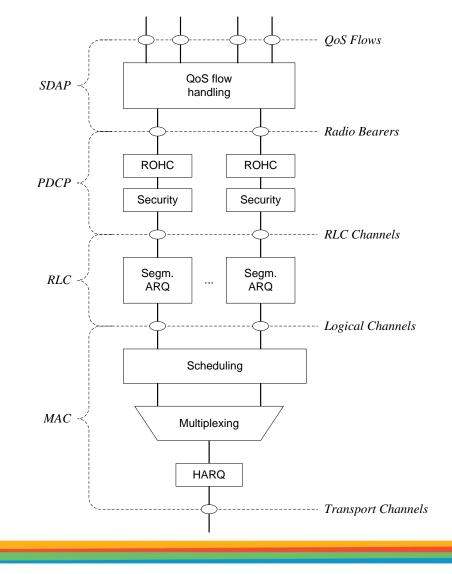
 NG-U (N3) delivery of user plane PDUs between the NG-RAN node and the UPF.


Xn-C Interface

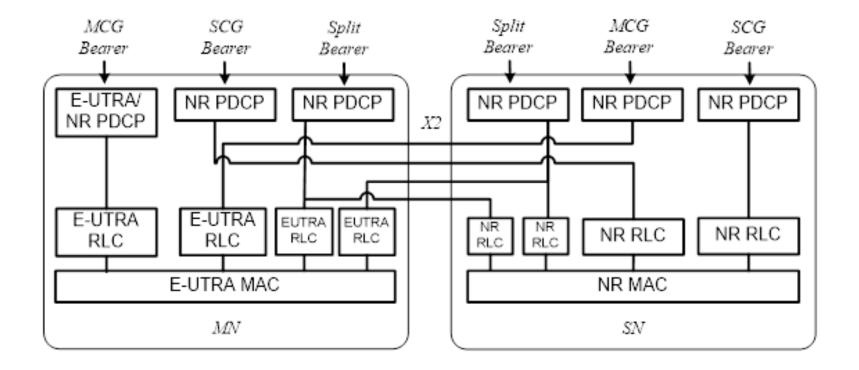
- The Xn-C interface supports the following functions:
 - Xn interface management;
 - UE mobility management, including context transfer and RAN paging:
 - Dual connectivity;


Xn-U Interface

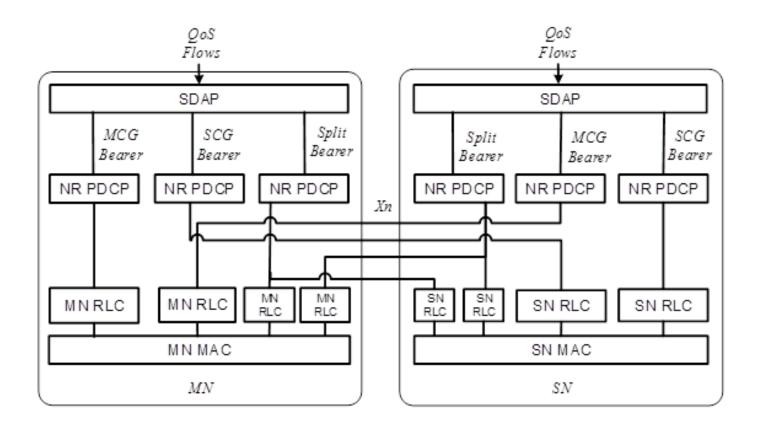

- Xn-U provides nonguaranteed delivery of user plane PDUs and supports the following functions:
 - Data forwarding;
 - Flow control.


Radio Protocol

SLICES-SC Summer School -Volos, Greece, 21/07/2022



Layer 2 (Uplink)


Overall dual-connectivity Architecture (with 4G core)

SLICES-SC Summer School -Volos, Greece, 21/07/2022

Overall dual-connectivity Architecture (with 5G core)

MAC Layer

- The main services and functions of the MAC sublayer include:
 - Mapping between logical channels and transport channels;
 - Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels;
 - Scheduling information reporting;
 - Error correction through HARQ (one HARQ entity per carrier in case of CA);
 - Priority handling between UEs by means of dynamic scheduling;
 - Priority handling between logical channels of one UE by means of logical channel prioritisation;
 - Padding.

Logical Channels

- Broadcast Control Channel (BCCH): a downlink channel for broadcasting system control information.
- **Paging Control Channel (PCCH):** a downlink channel that transfers paging information and system information change notifications.
- **Common Control Channel (CCCH):** channel for transmitting control information between UEs and network. This channel is used for UEs having no RRC connection with the network.
- **Dedicated Control Channel (DCCH):** a point-to-point bi-directional channel that transmits dedicated control information between a UE and the network. Used by UEs having an RRC connection.
- **Traffic channels** are used for the transfer of user plane information only:
- **Dedicated Traffic Channel (DTCH):** point-to-point channel, dedicated to one UE, for the transfer of user information. A DTCH can exist in both uplink and downlink.

Mapping of Logical to Transport/Physical Channels

- In Downlink, the following connections between logical channels and transport channels exist:
 - BCCH can be mapped to BCH;
 - BCCH can be mapped to DL-SCH;
 - PCCH can be mapped to PCH;
 - CCCH can be mapped to DL-SCH;
 - DCCH can be mapped to DL-SCH;
 - DTCH can be mapped to DL-SCH.
- In Uplink, the following connections between logical channels and transport channels exist:
 - CCCH can be mapped to UL-SCH;
 - DCCH can be mapped to UL- SCH;
- DTCH can be mapped to UL-SCH.

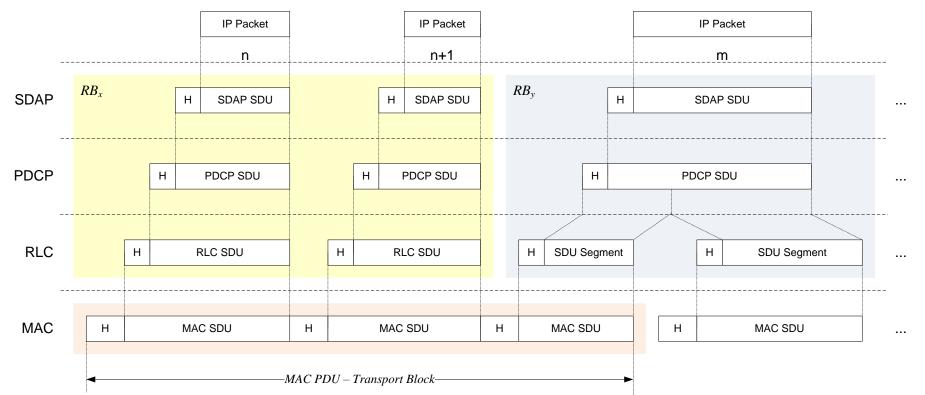
RLC (Radio-Link Control)

- The RLC sublayer supports three transmission modes:
 - Transparent Mode (TM);
 - Unacknowledged Mode (UM);
 - Acknowledged Mode (AM).
- The main services and functions of the RLC sublayer depend on the transmission mode and include:
 - Transfer of upper layer PDUs;
 - Sequence numbering independent of the one in PDCP (UM and AM);
 - Error Correction through ARQ (AM only);
 - Segmentation (AM and UM) and re-segmentation (AM only) of RLC SDUs;
 - Reassembly of SDU (AM and UM);
 - Duplicate Detection (AM only);
 - RLC SDU discard (AM and UM);
 - RLC re-establishment;
 - Protocol error detection (AM only).

= slicessc

PDCP (Packet Data Convergence Protocol)

- The main services and functions of the PDCP sublayer for the user plane include:
 - Sequence Numbering;
 - Header compression and decompression: ROHC only;
 - Transfer of user data;
 - Reordering and duplicate detection;
 - PDCP PDU routing (in case of split bearers);
 - Retransmission of PDCP SDUs;
 - Ciphering, deciphering and integrity protection;
 - PDCP SDU discard;
 - PDCP re-establishment and data recovery for RLC AM;
 - Duplication of PDCP PDUs.
- The main services and functions of the PDCP sublayer for the control plane include:
 - Sequence Numbering;
 - Ciphering, deciphering and integrity protection;
 - Transfer of control plane data;
 - Reordering and duplicate detection;
 - Duplication of PDCP PDUs (see subclause 16.1.3).



SDAP (Service Data Adaptation Protocol)

- New entity w.r.t. 4G
- The main services and functions of SDAP include:
 - Mapping between a QoS flow and a data radio bearer;
 - Marking QoS flow ID (QFI) in both DL and UL packets.

Example L2 Data Flow

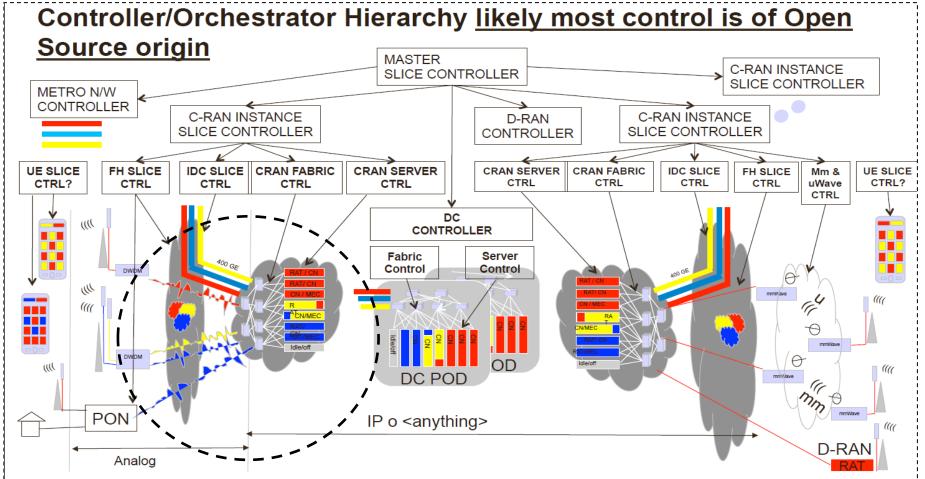
An example of the Layer 2 Data Flow is depicted on Figure 6.6-1, where a transport block is generated by MAC by concatenating two RLC PDUs from RB_x and one RLC PDU from RB_y . The two RLC PDUs from RB_x each corresponds to one IP packet (*n* and *n*+1) while the RLC PDU from RB_y is a segment of an IP packet (*m*).

RRC (5G)

- The main services and functions of the RRC sublayer include:
 - Broadcast of System Information related to AS and NAS;
 - Paging initiated by 5GC or NG-RAN;
 - Establishment, maintenance and release of an RRC connection between the UE and NG-RAN including:
 - Addition, modification and release of carrier aggregation;
 - Addition, modification and release of Dual Connectivity in NR or between E-UTRA and NR.
 - Security functions including key management;
 - Establishment, configuration, maintenance and release of Signalling Radio Bearers (SRBs) and Data Radio Bearers (DRBs);
 - Mobility functions including:
 - Handover and context transfer;
 - UE cell selection and reselection and control of cell selection and reselection;
 - Inter-RAT mobility.
 - QoS management functions;
 - UE measurement reporting and control of the reporting;
 - Detection of and recovery from radio link failure;
 - NAS message transfer to/from NAS from/to UE.

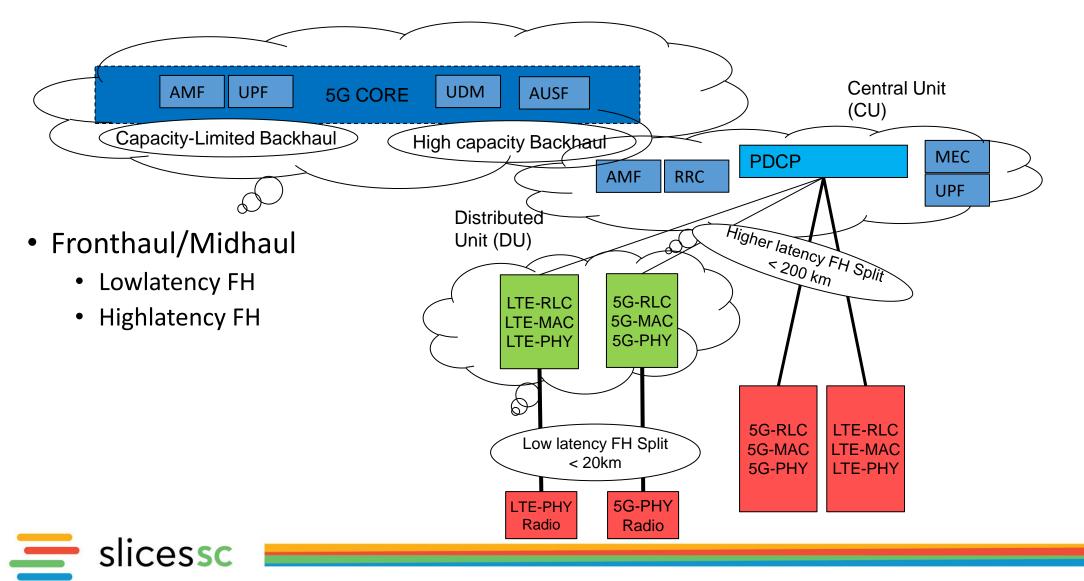
RRC States

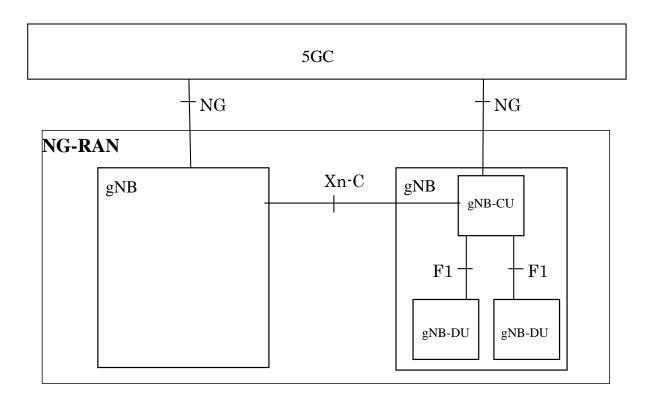
- RRC supports the following states which can be characterised as follows:
 - RRC_IDLE:
 - PLMN selection;
 - Broadcast of system information;
 - Cell re-selection mobility;
 - Paging for mobile terminated data is initiated by 5GC;
 - Paging for mobile terminated data area is managed by 5GC;
 - DRX for CN paging configured by NAS.
 - RRC_INACTIVE:
 - Broadcast of system information;
 - Cell re-selection mobility;
 - Paging is initiated by NG-RAN (RAN paging);
 - RAN-based notification area (RNA) is managed by NG- RAN;
 - DRX for RAN paging configured by NG-RAN;
 - 5GC NG-RAN connection (both C/U-planes) is established for UE;
 - The UE AS context is stored in NG-RAN and the UE;
 - NG-RAN knows the RNA which the UE belongs to.
 - RRC_CONNECTED:
 - 5GC NG-RAN connection (both C/U-planes) is established for UE;
 - The UE AS context is stored in NG-RAN and the UE;
 - NG-RAN knows the cell which the UE belongs to;
 - Transfer of unicast data to/from the UE;
 - Network controlled mobility including measurements.



RAN/Core Disaggregation

- Different deployment topologies for the RAN (and Core) are proposed in 3GPP driven by operators and vertical industries
 - Allow for optimizing geographic distribution of processing
 - Allow for multi-vendor solutions (end-to-end networking equipment from more than one vendor)
 - Allow tailoring solutions to specific vertical industry use-cases (industrial IoT, automotive, public-safety, etc.)

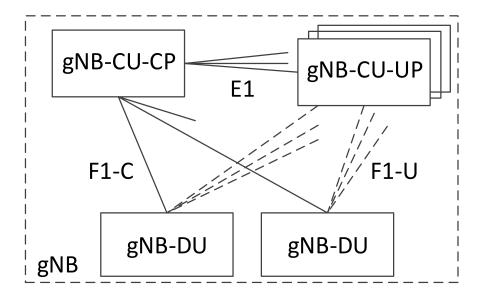

ITU IMT2020 FG Vision (primary networks)


Source: https://www.itu.int/en/ITU-T/Workshops-and-Seminars/itu-ngmn/Documents/Abstracts_and_Presentations/Peter-Ashwood-Smithv2.pdf

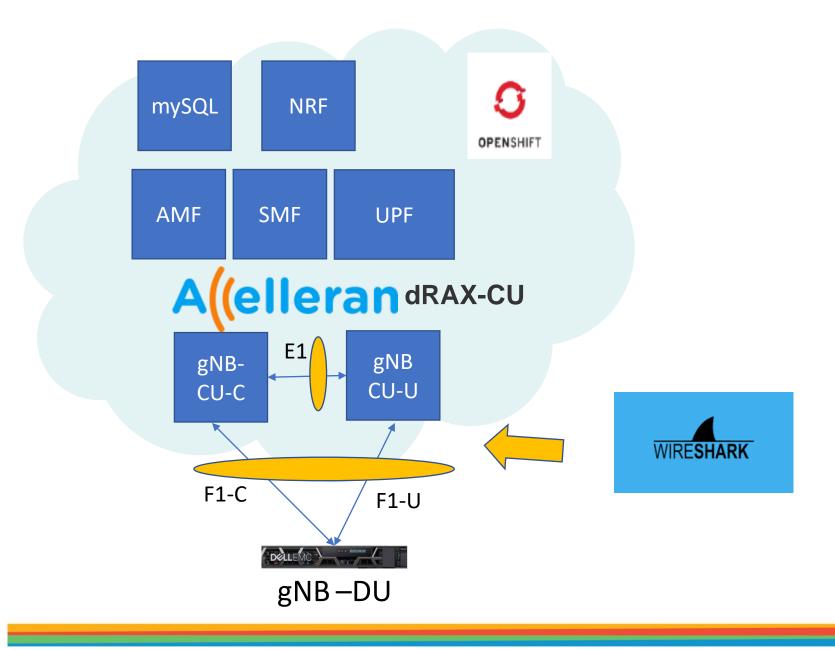
slicessc

Considered RAN Splits in 3GPP evolution

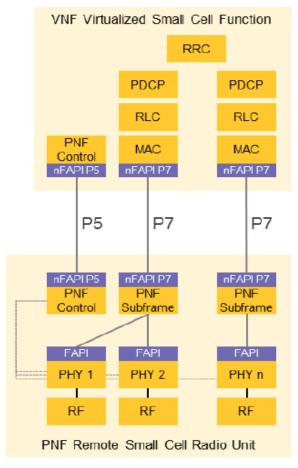
3GPP NG-RAN Functional Split



Introduction of F1 interface to split the RAN (gNodeB) in to two logical entities : gNB-CU, gNB-DU


Further split of gNB-CU (for breakout)

• An additional control-plane interface (E1) allows for gNB-CU to be split between C-plane and U-plane segments



Example

Small Cell Forum Functional Split

= slicessc

- (N)FAPI
 - N if networked. Uses TLV-formatted PDUs
- Interface for "simple" gNB devices (small-cells)
- P5 = configuration of PNF (SCTP for "N")
- P7 = control and user-plane information (UDP for "N")
 - Control is to configure physical/transport channels on UL/DL
 - User-plane contains the payload of different physical/transport channels
- Originally designed for 4G as an interface for disaggregated RAN
 - Issues with HARQ because of latency
- Can be used inside the "RAN cloud" between containers

Fronthaul interfaces

- (yesterday's lecture)
- Used to interconnect radio-units and gNodeB processing over longdistances
- CPRI/ECPRI is mainstream and uses proprietary user-plane and control plane formats, along with analog radio-over-fiber.
 - Not interoperable among vendors in general
 - Not specified by 3GPP
- O-RAN Open Fronthaul Interface (FHI)
 - Aims for interoperability between vendors

Bands, Channels, Bandwidth Parts

 Band = indicator of range of potential frequencies for the network

Fuerman		Comment in the former		
Frequency range designation		Corresponding frequenc	y range	
FR1		450 MHz – 6000 MHz		
FR2		24250 MHz – 52600 MHz		
NR	Uplink	Duplex Mod		
operating				
band	В			
	U			
	F _{UL,low} – F _{UL,high}			
		F _{DL low} – F _{DL high}		
n257	265	TDD		
n258	242	TDD		
n259	3950	TDD		
n260	370	TDD		

27500 MHz - 28350 MHz

TDD

NR	Uplink (UL) operating	Downlink (DL) operating	Duplex	n46	5150 MHz – 5925 MHz	5150 MHz – 5925 MHz	TDD ³
operat	band	band	mode	n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD
ing	BS receive / UE	BS transmit / UE receive		n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD
band	transmit	F _{DL,low} – F _{DL,high}		n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
	F _{III low} - F _{III bigh}			n53	2483.5 MHz – 2495	2483.5 MHz – 2495 MHz	TDD
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD		MHz		
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD	n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD	n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD	n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD	n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD	n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD	n75	N/A	1432 MHz – 1517 MHz	SDL
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD	n76	N/A	1427 MHz – 1432 MHz	SDL
n18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD	n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD	n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD	n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD	n80	1710 MHz – 1785 MHz	N/A	SUL
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD	n81	880 MHz – 915 MHz	N/A	SUL
n29	N/A	717 MHz – 728 MHz	SDL	n82	832 MHz – 862 MHz	N/A	SUL
n30	2305 MHz – 2315 MHz	2350 MHz – 2360 MHz	FDD	n83	703 MHz – 748 MHz	N/A	SUL
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD	n84	1920 MHz – 1980 MHz	N/A	SUL
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD	n86	1710 MHz – 1780 MHz	N/A	SUL
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD	n89	824 MHz – 849 MHz	N/A	SUL
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD	n90	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD	n91	832 MHz – 862 MHz	1427 MHz – 1432 MHz	FDD ²
				n92	832 MHz – 862 MHz	1432 MHz – 1517 MHz	FDD ²
				n93	880 MHz – 915 MHz	1427 MHz – 1432 MHz	FDD ²

n94

n95¹

n96⁴

880 MHz - 915 MHz

2010 MHz – 2025 MHz

5925 MHz – 7125 MHz

1432 MHz – 1517 MHz

N/A

5925 MHz – 7125 MHz

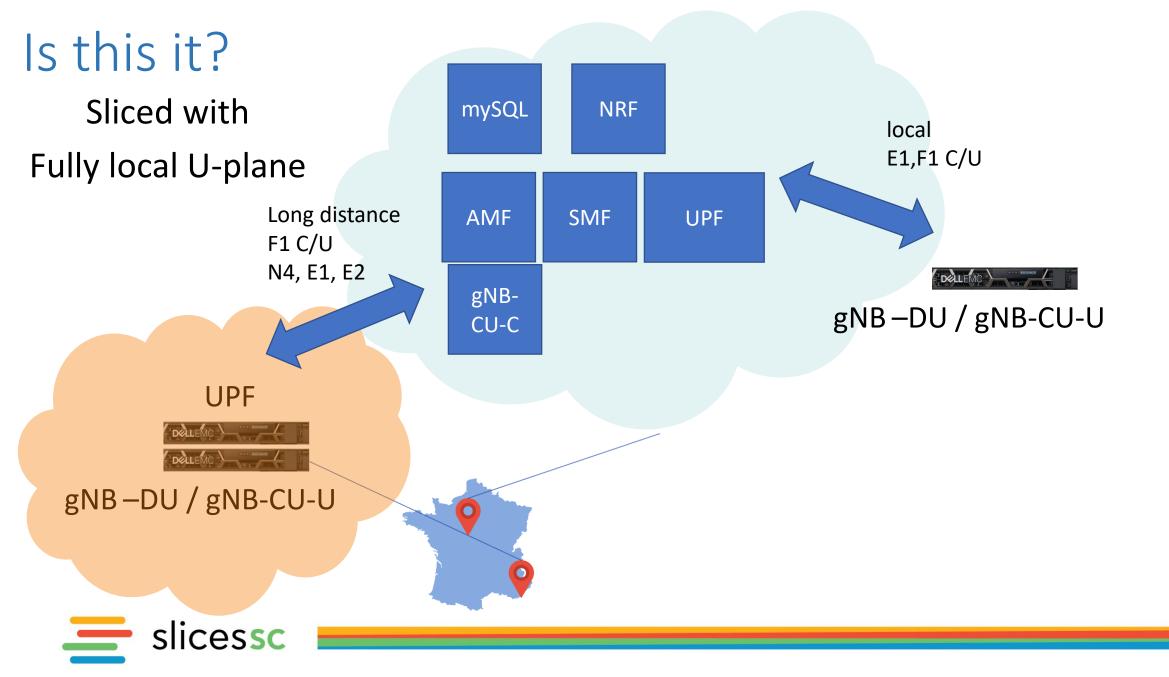
FDD²

SUL

TDD³

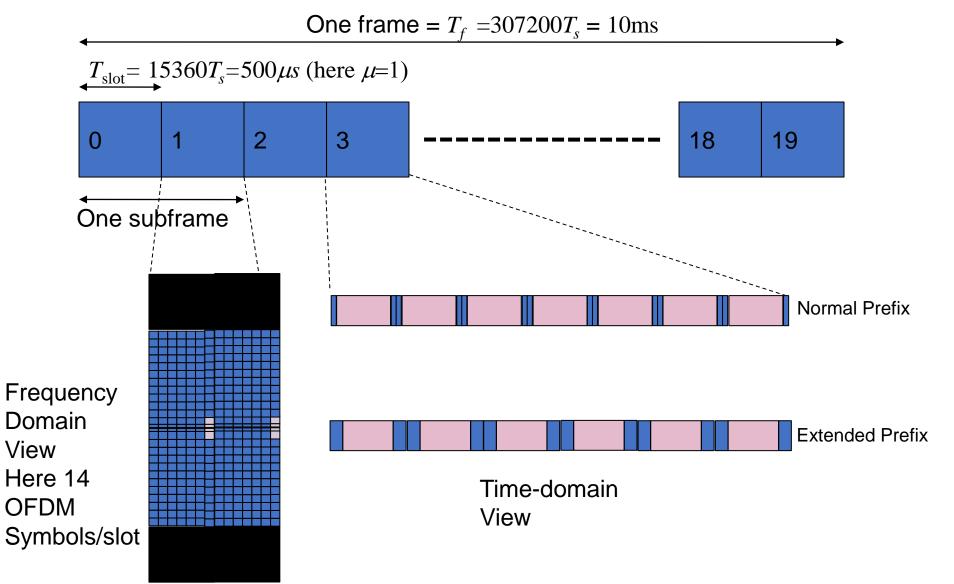
n260 n261

Break to talk about RAN for SLICES-RI

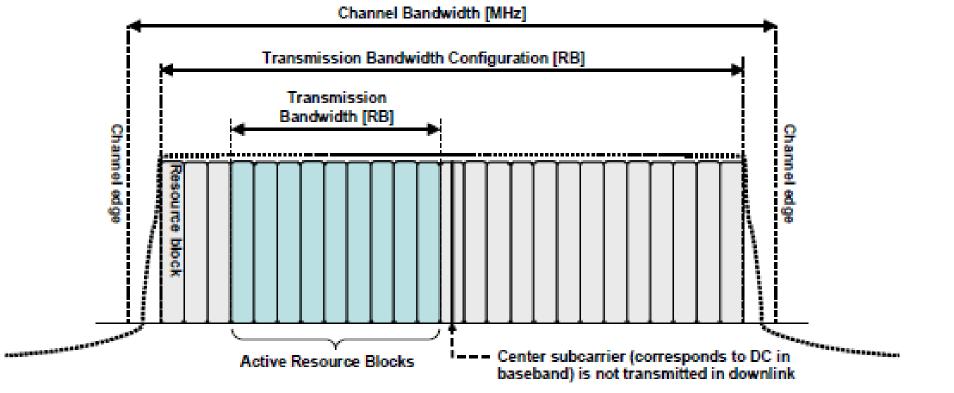

- Who will really deploy 5G/5G-Adv radio sites in SLICES-RI?
- Bands
 - In France (EURECOM allocations)
 - n38/41 40 MHz (2.575-2.615), next 2 years. Already operational outdoor.
 - n78 30 MHz (3.46-3.49 GHz), in the formal request process, renewable every 6 months (incumbant SFR starts at 3.49 GHz, so power and direction will be limited). Used at very lowpower indoor now. From 3.49-3.8 GHz, forget it, even indoor at low power. Interference is high because commercial 5G is everywhere and massive-MIMO arrays seem to penetrate very well, even at 3.5 GHz (better coverage indoor at 3.5 GHz than 2.6 GHz 4G)
 - n77 (3.8-4.0 GHz), should be ok for 2 years with 100 MHz. Difficult to get RRU, AW2S TBD or Mavenir O-RU maybe if they sell it to us. Used indoors and wired at EURECOM today. UEs are functional.
 - N258 (somewhere in 25-26 GHz), should be ok for a few years. Really uncertain for SLICES-RI services. Many difficulties for "reliable" experimentation. HW issues (RRU, UE) even if we can get OAI to work properly in mmWave.

Target RAN/Core Architecture for Slices VO

- E1/F1 interface over what distances?
- One central RAN/Core C-plane for all radio sites (e.g. in Paris?)
- Local CU-U/UPF for low-latency services
 - If we have a long-distance F1 interface (F1-C everything, F1-U for eMBB only), we will need local breakout for low-latency services. Paris<->Nice is 15ms RTT.



Frames, Subframe, Slots, Symbols, Resource Elements


- Numerology is a number $\mu = 0,1,2,3,4$
- Frame = 10 ms period (common to 3G/4G)
- Subframe = 1 ms period (common to 4G)
- Slot = 2^{-μ}ms period (1,.5,.25,.125,.0675)ms
 - Higher numerology means shorter slots => more slots per subframe
 - > Slots per subframe is 2^{μ}
- 14 OFDM symbols / slot for all μ in *Normal Prefix Mode*
- 12 OFDM symbols / slot for $\mu = 2$ in *Extended Prefix Mode*

Frames, Subframe, Slots, Symbols, Resource Elements

Resource blocks

- NR defines the notion of a <u>resource block</u> which represents the minimal scheduling resource for both uplink and downlink transmissions
- A <u>physical resource block</u>(PRB) corresponds to 180 · 2^µ kHz of
 SliCes spectrum

Subcarrier Spacing (SCS)

- Subcarrier spacing is the bandwidth per resource element (OFDM subcarrier)
- The PRB is 12 subcarriers, so subcarrier spacing is $180 \cdot 2^{\mu}/12 = 15,30,60,120,240 \text{ kHz}$

Common PRB Formats


Channel Bandwidth /SCS	Number PRB	Typical IDFT size	Number of Non- Zero Sub-carriers (REs)	Bandwidth
100MHz/30kHz	273	4096	3276	98.28 MHz
100MHz/120kHz	66	1024	792	95.04MHz
10MHz/15kHz	52	1024	624	9.36 MHz
40MHz/30kHz	106	1536 or 2048	1272	38.16 MHz
50MHz/30kHz	133	2048	1596	47.88 MHz

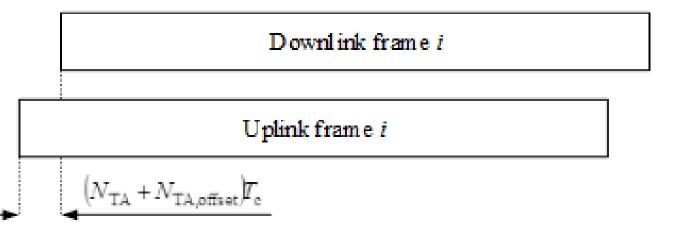
- PRBs are mapped onto contiguous OFDMA/SC-FDMA symbols in the time-domain with starting symbol in (1...14) and can have any length in (2...14). PRBs can be aggregated across slots when using *repetitions*
- Each PRB is chosen to be equivalent to 12 sub-carriers of an OFDMA symbol in the frequency-domain
- OFDMA/SC-FDMA Sub-carriers are termed "Resource Elements" (RE)
- high-frequencies are nulled
 - Spectral shaping

SICESSC Half the bandwidth loss w.r.t. WCDMA (22%)

Bandwidth parts

- Channel Bandwidth is partitioned into so-called *bandwidth parts (BWP)*
 - Defined by a starting PRB and size
 - Can be overlapping
 - Can have different numerologies (μ)
 - Are UE-dependent except index 0 which is gNB-dependent (i.e. common to all UEs connected to the gNB)
- One BWP is special the SSB -
 - Subcarrier-spacing is not arbitrary (15 or 30 for FR1, 120 or 240 for FR2)
- Resource blocks in the grid are called the Common Resource Block (CRB)
 - A BWP comprises a number of CRBs less than or equal to the total number of CRBs for the bandwidth configuration

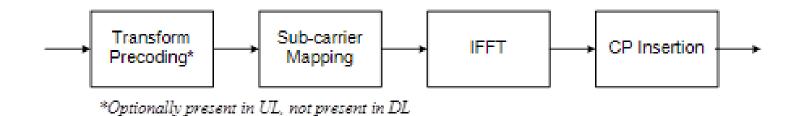
Formats in OAI


20,30,40,50,60 MHz SSB+initalBWPs are the only BWP

80,100 MHz nitalBWP of 20-60 MHz until UE is fully configured (PDUSession) Dedicated BWP of 80/100 MHz with PDUSession

Timing Advance

- Timing Advance (TA) is used to adjust the uplink frame timing relative to the downlink frame timing
- Constance part $N_{TA,offset}$, which is non-zero in TDD and variable and UE-specific part (N_{TA}), which is used to synchronize UEs at the gNodeB receiver



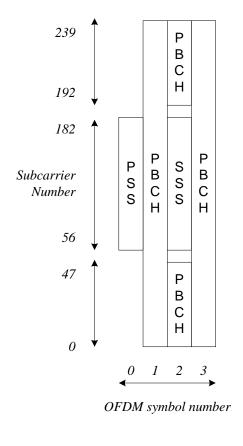
Antenna Ports

- An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed.
 - Note: This is a purely "virtual" antenna port, also sometimes called logical antenna port
 - Symbol here is Resource Element
- A gNodeB can have any number of physical antenna ports
 - 64,128,192 are common sizes for so-called *"Massive-MIMO"* or *"Active"* Antenna arrays
 - Through spatial signal processing the UE is made to believe that the antenna has a certain (smaller) number of *logical* antenna ports
 - Each logical antenna port (which can be UE-specific) is associated with a signal that can be used to estimate the channel between the gNB and UE (or UE and gNB for the UL). This can be the SSB DMRS (Demodulation Reference Signal - later) or the PDSCH CSI-RS (Channel State Information Reference Signal – later)

= slicessc

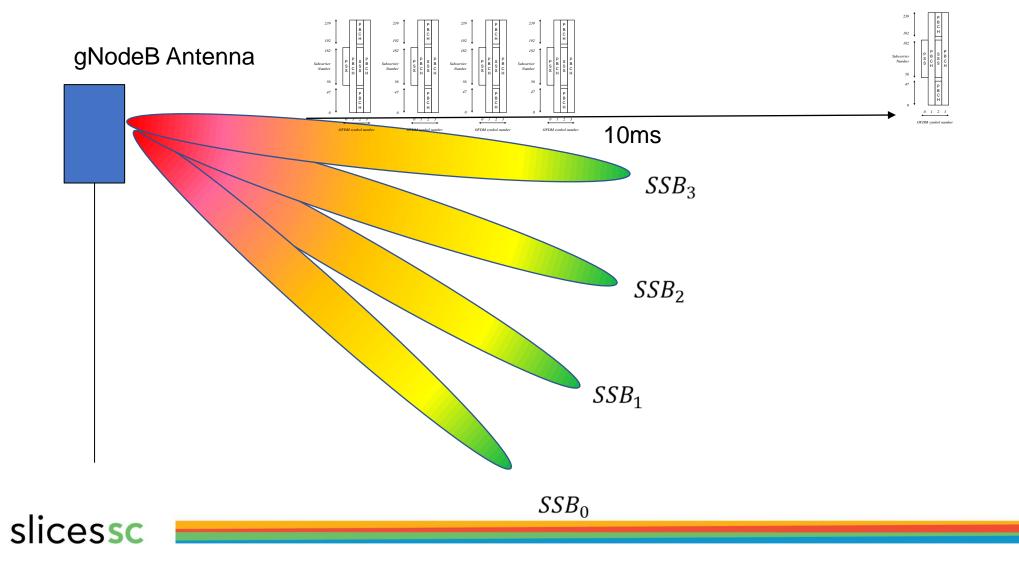
Basic OFDM Transmission

- DL is regular OFDM
- UL can have a transform precoder (SC-FDMA), this is UE-specific and even physical channel specific



Synchronization Signal Block (SSB)

- Used in standalone and non-standalone
- Usually coincides with the initial BWP
- A UE finds the gNodeB by detecting the "Synchronization" Channels
 - Primary synchronization (PSS) channel gives initial timing and frequency measurements
 - Secondary synchronization (SSS) channel gives additional frequency measurements and carries a small payload which conveys the "physical cell identifier"
- Once timing/frequency/cell id are hypothesized
 - Detection of PBCH => first real amount of System Information (MIB) for the network (a piece of the particular gNB configuration in standalone mode, just time information frame/slot in nonstandalone)


SSB allocations

- Contains 4 signals
 - PSS,SSS, PBCH, PBCH DMRS
 - Over 4 symbols
 - 240 resource elements (20 PRBs)
- This occurs in particular symbols in the first few slots of the first halfframe and repeats each frame
 - Each SSB is mapped to a particular beam index
 - A UE will try to measure multiple SSBs

SSB Beams and Time multiplexing

SSB Beams and Time multiplexing (2)

- UE determines the strongest SSB index (Beam) and camps on it, while doing measurements of the other ones in case beam pattern changes because of mobility or another reason
- SSB index is used later for transmission of the first uplink message to connect to the gNodeB (PRACH, later)

Physical Broadcast Channel (PBCH)

- The PBCH carries the MIB (24 bits), the first RRC protocol unit, called the **Master Information Block**, and some other dedicated bits for the PHY layer
- It is coded using
 - a binary polar code + rate-matching
 - 32-bit payload + 24-bit CRC

System Information

- This is used only in Standalone operation
 - Non-standalone provides the full NR radio configuration via LTE link and can skip this step
 - In Standalone, UE has to receive radio configuration messages over NR link, in addition to the necessary protocol information
- System information (SIB1) uses 2 types of DL transmission
 - Physical Downlink Control Channel (PDCCH) carrying DCI (downlink control information)
 - Physical Downlink Shared Channel (PDSCH) carrying payload
- Initially, this information is conveyed over a special allocation before cell-specific information is known (it is in the payload of the first and only necessary one, SIB1
 - the allocation depends on parameters in the MIB which define
 - "Coreset0" which defines the resources of the PDCCH (starting PRB and length of PDCCH in PRBs and number of symbols, based on a lookup table)
 - The DCI contents define the allocation of SIB1

PDCCH

- This is a special signaling channel which provides
 - Scheduling information for DL traffic and signaling (PDSCH)
 - Scheduling information for UL traffic and signaling (PUSCH)
 - Power-control information
 - RAN and 5GC Paging-related information

Scheduling process (gNB perspective)

- Determine which UEs should be granted resources on the uplink (based on information from SRS and queuing feedback) and what resources to grant
- Determine which UEs should be granted resources on the downlink (based on CQI, RI, and local queuing information)
- Identify common control channel messages for format 2-x (TPC)
- For each message decide on PDCCH format (1,2,4 or 8, 16 CCEs), and any power offset to be applied
- Determine how much PDCCH resources (in terms of CCEs) will be required, how many OFDM symbols would be needed for these PDCCHs
- If any PDCCH cannot be mapped to a CCE location (no more room)
 - Increase OFDM symbol count for PDCCH (if possible)
 - Drop some DLSCH allocations (lowest priority)
- Allocate resources to PDCCHs
- Check powers
- Transmit

Outline

Scientific Large-scale Infrastructure for Computing Communication Experimental Studies Starting Communities

Thank you

www.slices-sc.eu